
Privacy Preservation in Data

Mining Through Noise Addition

Md Zahidul Islam

A thesis submitted in fulfillment of the requirements for the degree of

Doctor of Philosophy

School of Electrical Engineering and Computer Science

University of Newcastle

Callaghan

New South Wales 2308

Australia

November 2007

i

Certificate of Originality

I hereby certify that the work embodied in this thesis is the result of original research and

has not been submitted for a higher degree at any other University or Institution.

(Signed)

Md Zahidul Islam

ii

Acknowledgements

I would like to thank my supervisor A/Prof. Ljiljana Brankovic who is something more

than just a supervisor to all her students. Whenever I was in a trouble she was there with

her genuine suggestions and dependable directions. She introduced this research area to

me. If I have learnt anything on how to do research then it is due to her wise supervision.

She always led us to be independent researchers having high ethics and moral values.

I would also like to thank my co-supervisor Professor A.S.M. Sajeev for his support, en-

couragement and wisdom. I am also grateful to Dr Regina Berretta, Dr Michael Hannaford,

Dr Alexandre Mendes, Professor Mahbub Hassan, Professor M. F. Rahman, Professor Mirka

Miller and Professor Elizabeth Chang for their support and encouragement.

I would give my special thanks to my friends Helen, Mousa, Mouris and Tanya for

their enormous moral support throughout my study. My thanks also to all Faculty and Staff

members of the School of Electrical Engineering and Computer Science and all postgraduate

students of the school during my study for being so kind and friendly to me.

Last but not least, I would like to thank my wife Moonmoon for her patience, care,

support, trust, love and encouragement. My special thanks to my children Abdellah, Sai-

fullah and Mahir for their love and support. I would like to thank my parents Harun and

Nilu, my father in law, mother in law, sister and brother in law for their encouragement.

They have been a very supportive family all the way.

iii

This thesis is gratefully dedicated to

My Family:

Moonmoon, my wife

Abdellah, Saifullah and Mahir, my sons

My Parents, My Sister, My Father in law, My Mother in law

and All Relatives

for their patience, their unwavering support and their faith.

Say: “If the ocean were ink (wherewith to write out) the words of my Lord.
Sooner would the ocean be exhausted than would the words of my Lord, even if
we added another ocean like it, for its aid.” (Qur’an 18:109)

iv

List of publications arising from

this thesis

1. M. Z. Islam, and L. Brankovic, Privacy Preserving Data Mining: A Framework for

Noise Addition to all Numerical and Categorical Attributes, In Data Mining and

Knowledge Discovery. (In Preparation)

2. M. Z. Islam, and L. Brankovic, Privacy Preserving Data Mining: Noise Addition to

Categorical Values Using a Novel Clustering Technique, In IEEE Transactions on

Industrial Informatics, 2007. (Submitted on the 3rd September, 2007)

3. L. Brankovic, M. Z. Islam and H. Giggins, Privacy-Preserving Data Mining, Security,

Privacy and Trust in Modern Data Management, Springer, Editors Milan Petkovic

and Willem Jonker, ISBN: 978-3-540-69860-9, Chapter 11, 151-166, 2007.

4. M. Z. Islam, and L. Brankovic, DETECTIVE: A Decision Tree Based Categorical

Value Clustering and Perturbation Technique in Privacy Preserving Data Mining, In

Proc. of the 3rd International IEEE Conference on Industrial Informatics, Perth,

Australia, (2005).

5. M. Z. Islam, and L. Brankovic, A Framework for Privacy Preserving Classification in

Data Mining, In Proc. of Australian Workshop on Data Mining and Web Intelligence

(DMWI2004), Dunedin, New Zealand, CRPIT, 32, J. Hogan, P. Montague, M. Purvis

and C. Steketee, Eds., Australian Computer Science Communications, (2004) 163-168.

6. M. Z. Islam, P. M. Barnaghi and L. Brankovic, Measuring Data Quality: Predictive

Accuracy vs. Similarity of Decision Trees, In Proc. of the 6th International Conference

on Computer & Information Technology (ICCIT 2003), Dhaka, Bangladesh, Vol.2,

(2003) 457-462.

7. M. Z. Islam, and L. Brankovic, Noise Addition for Protecting Privacy in Data Mining,

In Proc. of the 6th Engineering Mathematics and Applications Conference (EMAC

v

2003), Sydney, Australia, (2003) 457-462.

vi

List of other publications during

the candidature

1. M. Alfalayleh, L. Brankovic, H. Giggins, and M. Z. Islam, Towards the Graceful Tree

Conjecture: A Survey, In Proc. of the 15th Australasian Workshop on Combinatorial

Algorithms (AWOCA 2004), Ballina, Australia, (2004).

vii

Abstract

Due to advances in information processing technology and storage capacity, nowadays

huge amount of data is being collected for various data analyses. Data mining techniques,

such as classification, are often applied on these data to extract hidden information. During

the whole process of data mining the data get exposed to several parties and such an

exposure potentially leads to breaches of individual privacy.

This thesis presents a comprehensive noise addition technique for protecting individual

privacy in a data set used for classification, while maintaining the data quality. We add noise

to all attributes, both numerical and categorical, and both to class and non-class, in such

a way so that the original patterns are preserved in a perturbed data set. Our technique is

also capable of incorporating previously proposed noise addition techniques that maintain

the statistical parameters of the data set, including correlations among attributes. Thus the

perturbed data set may be used not only for classification but also for statistical analysis.

Our proposal has two main advantages. Firstly, as also suggested by our experimental

results the perturbed data set maintains the same or very similar patterns as the original

data set, as well as the correlations among attributes. While there are some noise addition

techniques that maintain the statistical parameters of the data set, to the best of our

knowledge this is the first comprehensive technique that preserves the patterns and thus

removes the so called Data Mining Bias from the perturbed data set.

Secondly, re-identification of the original records directly depends on the amount of

noise added, and in general can be made arbitrarily hard, while still preserving the original

patterns in the data set. The only exception to this is the case when an intruder knows

enough about the record to learn the confidential class value by applying the classifier.

However, this is always possible, even when the original record has not been used in the

training data set. In other words, providing that enough noise is added, our technique

makes the records from the training set as safe as any other previously unseen records of

the same kind.

In addition to the above contribution, this thesis also explores the suitability of pre-

diction accuracy as a sole indicator of data quality, and proposes technique for clustering

both categorical values and records containing such values.

viii

Contents

List of Figures xi

List of Tables xiv

1 Introduction 1

2 Data Mining 5
2.1 Introduction to Data Mining . 5

2.1.1 Definition . 5
2.1.2 Comparison with Traditional Data Analyses 6
2.1.3 Data Mining Steps . 7

2.2 Data Mining Tasks . 9
2.3 Applications of Data Mining . 14

2.3.1 Usefulness in General . 14
2.3.2 Some Applications of Data Mining Techniques 15

2.4 Privacy Issues Related to Data Mining . 17
2.5 Conclusion . 20

3 Privacy Preserving Data Mining - A Background Study 21
3.1 Classification Scheme and Evaluation Criteria 21
3.2 Data Modification . 28

3.2.1 Noise Addition in Statistical Database 28
3.2.2 Noise Addition in Data Mining . 32
3.2.3 Data Swapping . 39
3.2.4 Aggregation . 40
3.2.5 Suppression . 40

3.3 Secure Multi-Party Computation . 41
3.4 Comparative Study . 46
3.5 Conclusion . 46

4 Class Attribute Perturbation Technique 48
4.1 The Essence . 48
4.2 Noise Addition to Class Attribute . 50
4.3 The Experiment . 57

ix

4.4 Conclusion . 63

5 Non-class Numerical Attributes Perturbation Technique 71
5.1 Introduction . 71
5.2 The Leaf Innocent Attribute Perturbation Technique 74
5.3 The Leaf Influential Attribute Perturbation Technique 76
5.4 The Random Noise Addition Technique . 77
5.5 Conclusion . 77

6 Non-class Categorical Attributes Perturbation Technique 79
6.1 Introduction . 79
6.2 Background . 80
6.3 An Overview of Existing Categorical Attribute Clustering Techniques . . . 82
6.4 DETECTIVE : A Novel Categorical Values Clustering Technique 91

6.4.1 The Preliminaries . 91
6.4.2 DETECTIVE . 91
6.4.3 The Essence . 92
6.4.4 Illustration . 94
6.4.5 The Similarities . 95
6.4.6 The Difference . 96
6.4.7 EX-DETECTIVE . 97

6.5 CAPT: Categorical Attributes Perturbation Technique 101
6.6 Experimental Results . 102

6.6.1 Experiments on DETECTIVE . 104
6.6.2 Experiments on CAPT . 106

6.7 Properties of Synthetic Data Sets . 111
6.7.1 Properties of Credit Risk (CR) Data Set 111
6.7.2 Properties of Customer Status (CS) Data Set 112

6.8 Conclusion . 114

7 The Framework and Experimental Results 116
7.1 The Framework . 116
7.2 The Extended Framework . 117
7.3 Experiments . 119

7.3.1 Experiments on the Adult Data Set 122
7.3.2 Experiments on Wisconsin Breast Cancer Data Set 137

7.4 Conclusion . 148

8 Measuring of Disclosure Risk 155
8.1 Measuring Disclosure Risk . 156
8.2 Conclusion . 164

x

9 Data Quality 165
9.1 Motivation . 165
9.2 Our Work . 167
9.3 Experimental Results . 169
9.4 Conclusion . 173

10 Conclusion 175

Bibliography 179

xi

List of Figures

2.1 An example of a decision tree. Squares represent internal nodes, the unshaded
circle represents homogeneous leaf where all records have the same class value
and shaded circles represent heterogeneous leaves. 11

2.2 Main Clustering Methods. 13

3.1 Classification of Data Sets Based on Distribution. 22
3.2 A Classification of Privacy Preserving Techniques. 25

4.1 An example of a decision tree classifier. 51
4.2 The decision tree obtained from 300 records of the original BHP data set. . 59
4.3 The decision tree obtained from the 1st of the five BHP data sets that have

been perturbed by the RPT. 60
4.4 The decision tree obtained from the 2nd of the five BHP data sets that have

been perturbed by the RPT. 61
4.5 The decision tree obtained from the 3rd of the five BHP data sets that have

been perturbed by the RPT. 62
4.6 The decision tree obtained from the 4th of the five BHP data sets that have

been perturbed by the RPT. 64
4.7 The decision tree obtained from the 5th of the five BHP data sets that have

been perturbed by the RPT. 65
4.8 The decision tree obtained from one of the ten BHP data sets that have been

perturbed by the PPT. 66
4.9 The decision tree obtained from another BHP data set that has been per-

turbed by the PPT. 67
4.10 The decision tree obtained from a 3rd BHP data set that has been perturbed

by the PPT. 68
4.11 The decision tree obtained from one of the ten BHP data sets that have been

perturbed by the ALPT. 68
4.12 The decision tree obtained from another BHP data set that has been per-

turbed by the ALPT. 69
4.13 The decision tree obtained from a 3rd BHP data set that has been perturbed

by the ALPT. 70

xii

5.1 The decision tree obtained from 349 records of the original (unperturbed)
WBC data set. 73

6.1 The basic concept of similarity, of two values belonging to a categorical at-
tribute, in CACTUS. 83

6.2 An illustration of the correlation analysis by CORE. 84
6.3 An example showing a limitation of CORE. 86
6.4 Representation of a data set as a hyper-graph. 90
6.5 A section of the decision tree built on the CR data set. The tree considers

attribute City as class attribute. 95
6.6 Basic steps of EX-DETECTIVE - for clustering records based on attributes

A and B. 98
6.7 Clustering records based on the attributes A, B and C. 99
6.8 Clustering records of a data set having numerical attribute/s along with

categorical attribute/s. 100
6.9 Details of a decision tree built from the unperturbed CS data set. The

tree considers attribute Car Make as class attribute. This tree is used for
clustering values of the attribute Car Make. 105

6.10 A decision tree To(status), built on the original CS data set. The tree con-
siders the natural class attribute Status as class attribute. 107

6.11 A decision tree Tp(status), built on a perturbed CS data set. The tree
considers the attribute Status as class attribute. 108

6.12 A decision tree built on a total perturbed CS data set. The tree considers
attribute Car Make as class attribute. 109

6.13 A decision tree built on another total perturbed CS data set. The tree
considers attribute Car Make as class attribute. 109

7.1 The decision tree DTtraining obtained from 25,600 records of the training
Adult data set. 124

7.2 The decision tree obtained from a data set perturbed by the Framework. . . 125
7.3 The decision tree obtained from a data set perturbed by the Framework. . . 125
7.4 The decision tree obtained from a data set perturbed by the Random Frame-

work. 128
7.5 The decision tree obtained from a data set perturbed by the Random Frame-

work. 129
7.6 The decision tree obtained from a data set perturbed by the Extended Frame-

work. 130
7.7 The decision tree obtained from a data set perturbed by the Extended Frame-

work. 131
7.8 The decision tree obtained from a data set perturbed by Random Extended

Framework. 135
7.9 The decision tree obtained from a data set perturbed by Random Extended

Framework. 136
7.10 The decision tree obtained from the training WBC data set. 139
7.11 The decision tree obtained from a WBC data set perturbed by the Framework.140

xiii

7.12 The decision tree obtained from a WBC data set perturbed by the Framework.141
7.13 The decision tree obtained from a data set perturbed by Random Technique. 142
7.14 The decision tree obtained from another data set perturbed by Random Tech-

nique. 143
7.15 The decision tree obtained from a data set perturbed by the Extended Frame-

work. 144
7.16 The decision tree obtained from a data set perturbed by the Extended Frame-

work. 145
7.17 An example of how the information gain of an attribute can increase due to

a noise addition. 151

8.1 The probability distribution of a perturbed record originating from the target
record x. 160

8.2 Entropies of a perturbed data set calculated for each original record. 161

9.1 A decision tree obtained from the training BHP data set having 300 records.
Squares represent internal nodes, unshaded circle represents homogeneous
leaf and shaded circles represent heterogeneous leaves. 168

xiv

List of Tables

2.1 Harris Poll Survey: Privacy Consciousness of Adults [98] 19

3.1 Privacy Preserving Techniques - Comparative Study 47

6.1 Time taken by the whole program in seconds on the mushroom data set. . . 88
6.2 Time taken by the whole program in seconds on the landslide data set. . . . 89
6.3 The cluster produced by CACTUS from the CS data set. 105
6.4 Similarities of perturbed trees with corresponding original trees. 110
6.5 Similarities of perturbed trees with corresponding original trees - using J48. 111

7.1 Prediction Accuracy of the Classifiers Obtained from the Unperturbed and
Various Perturbed Adult Data Sets. 152

7.2 Prediction Accuracy of the Classifiers Obtained from the Unperturbed and
Various Perturbed WBC Data Sets. 153

7.3 Prediction Accuracy of the Classifiers Obtained from WBC Data Sets Per-
turbed by GADP technique only. 154

8.1 A Compare of Entropies for the Cases Where the Intruder Has Access to the
Original and the Perturbed Data Set. 163

9.1 Experimental Results of Decision Tree Classifiers on the BHP Data Set. . . 170
9.2 Experimental Results of Decision Tree Classifiers on the WBC Data Set. . . 171
9.3 Experimental Results of Neural Network Classifier on BHP Data Set. “Diff.”

in Col. G Means That There are 5 Different Values in All 5 Experiments and
Hence There is No Single Mode Value. 172

9.4 Experimental Results of Neural Network Classifier on WBC Data Set. . . . 172

1

Chapter 1

Introduction

Due to the advances in information processing technology and the storage capacity,

modern organisations collect a huge amount of data. For extracting hidden and previously

unknown information from such huge data sets the organisations rely on various data mining

techniques. During the whole process of data mining these data often get exposed to several

parties. If such a party has enough supplementary knowledge about an individual having a

record in the data set, then the party can re-identify the record. Thus sensitive information

stored about the individual can potentially be disclosed resulting in a breach of individual

privacy. Therefore, we need techniques for protecting individual privacy while allowing data

mining.

Many noise addition techniques for protecting privacy have been designed for statis-

tical databases [111, 102, 68, 56, 99, 100, 57, 58, 73, 92, 74] but they do not take into

account the requirements specific to data mining applications. Wilson and Rosen investi-

gated the prediction accuracy of classifiers obtained from data sets perturbed by existing

noise addition techniques for statistical databases [116]. They found that the classifiers

built on the data sets perturbed by such techniques including GADP suffer from a lack of

prediction accuracy on a testing data set. This suggests the existence of a Data Mining

Bias related to the change of patterns of a data set. We argue that two attributes may not

be correlated over the whole data set, but may have a high correlation within a horizontal

segment, i.e., within a set of records. For example, the attributes Age and Weight may not

be highly correlated in the whole data set. However, they are typically correlated within

the horizontal segment where age is less than 10 years. Therefore, when a perturbation

technique preserves the overall correlation between two attributes it may not preserve the

2

correlation between the attributes within a horizontal segment. This relationship between

two attributes within a horizontal segment can be seen as a pattern of the data set.

Therefore, we need data modification techniques designed for various data mining ap-

plications such as classification and clustering. There are some noise addition techniques

specifically designed for data mining [28, 3, 26, 121, 66]. The techniques proposed by

Agrawal et al. and Du et al. [3, 26] perturb a data set targeting to maintain only good

prediction accuracy of the classifier obtained from the perturbed data set. Zhu and Liu pro-

posed a technique [121] that supports privacy preserving density estimation. The technique

proposed by Estivill-Castro and Brankovic [28] focuses on preserving original patterns in

a perturbed data set. They perturb a data set in such a way so that the classifier (deci-

sion tree) obtained from a perturbed data set is similar to the classifier obtained from the

original data set.

We consider a data set as a two dimensional table where the rows (records) correspond

to individuals and the columns (attributes) correspond to the properties of those individuals.

Out of these attributes one is the categorical class attribute representing a class or category

of a record. We consider the class attribute as confidential. The non-class attributes of a

data set can be numerical or categorical. The technique proposed by Estivill-Castro and

Brankovic [28] perturbs only the class attribute.

This thesis presents a collection of techniques that add noise to all attributes (including

categorical and numerical non-class attributes, and the categorical class attribute), in such a

way that the patterns from the original data set are also maintained in perturbed data sets.

Our experimental results suggest that the decision trees obtained from the original data set

and perturbed data sets are very similar in terms of logic rules and prediction accuracy. This

recommends a high quality of perturbed data sets when used for classification. Additionally,

when a relatively small amount of noise is added, the perturbed data sets are also suitable

for other data mining tasks, such as clustering. In terms of security, noise added to all

attributes makes record re-identification difficult, and thus protects individual privacy in a

perturbed data set.

In Chapter 2 we give a brief introduction to data mining and its applications. We also

discuss the privacy issues related to data mining, and the growing public concern regarding

this issue.

In Chapter 3 we present a comprehensive background survey of existing techniques

for privacy preserving data mining. We discuss the essence of these techniques and present

3

a comparative study.

In Chapter 4, following the approach taken by Estivill-Castro and Brankovic [28],

we present a technique for adding noise to a categorical class attribute in such a way so

that the original patterns (logic rules) are not disturbed. Such a noise prevents an intruder

from learning the confidential class values with certainty.

In Chapter 5 we present techniques for adding noise to all non-class numerical at-

tributes. The noise having zero mean and a normal distribution is added in such a way

so that the perturbed value remains within an appropriate range defined by the original

patterns of the data set. Therefore, a perturbed data set preserves the original patterns.

In Chapter 6 we present a technique that adds noise to all non-class categorical

attributes of a data set. Following the approaches taken by some existing techniques [40,

11, 61] we first cluster categorical values belonging to an attribute and then change them to

other values belonging to the same cluster with some predefined probability. We use a novel

clustering technique that has a few basic differences with existing clustering techniques. We

also propose an extension of this technique to cluster the whole records rather than attribute

values.

In Chapter 7 we present a framework that combines the techniques for adding noise

to all numerical and categorical attributes including the class attribute. Such noise addition

prevents an accurate record re-identification by an intruder. Therefore, individual privacy

in such perturbed data sets is expected to be very high. Our experimental results indicate

that the perturbed data set preserves the original patterns and prediction accuracy very

well.

In this chapter we also present an extended framework that incorporates an exist-

ing noise addition technique called GADP [73] along with the class attribute perturbation

technique presented in Chapter 4. GADP perturbs a data set while preserving the original

correlations among the attributes. Our extended framework uses GADP in such a way so

that the perturbed values remain within appropriate ranges defined by the original pat-

terns. Therefore, the extended framework preserves the original patterns along with the

correlations. The extended framework can also use C-GADP [92] or EGADP [74] instead of

GADP to accommodate small data sets that do not have multivariate normal distribution.

We finally present experimental results that suggest the effectiveness of our framework and

extended framework.

In Chapter 8 we present a novel technique for measuring disclosure risk of a perturbed

4

data set. The technique uses an entropy based approach. We discuss our noise addition

method and show that we can achieve arbitrarily high security by adding required level of

noise to all non-influential attributes, while still preserving the patterns in the data set.

In Chapter 9 we explore the suitability of prediction accuracy as a sole indicator of

data quality. Typically data quality is evaluated by just the prediction accuracy of the

classifier obtained from the data set [60, 69, 116]. However, in Chapter 7 we evaluated data

quality of a perturbed data set through a few quality indicators such as the similarity of

decision trees obtained from the original and the perturbed data set, prediction accuracy

of a classifier on the underlying data set and on a testing data set and the similarity of

correlation matrices belonging to the original and the perturbed data set.

In Chapter 10 we present concluding remarks and future research directions.

5

Chapter 2

Data Mining

In this chapter we give a brief introduction to data mining, its application and main

techniques. We also discuss privacy issues arising in data mining, and the related growing

public concern.

2.1 Introduction to Data Mining

2.1.1 Definition

Since the introduction of relational databases a series of advanced data models have

been developed including extended-relational, object-oriented, object-relational and de-

ductive databases. Today we have application oriented database systems, heterogeneous

database systems and Internet-based global information systems such as World Wide Web

(WWW). At the same time, there has been a remarkable progress in computer hardware

technology. This has led to a huge supply of powerful and affordable computers, data collec-

tion equipments and storage media in the market. Due to this development of information

processing technology and storage capacity, huge amount of data is being collected on a

regular basis by various organizations and companies. Data mining techniques are used to

extract invaluable knowledge from this huge amount of data.

It has been pointed out that when gold is mined from rocks or sand we call it gold min-

ing instead of rock mining or sand mining [47]. Therefore, data mining could alternatively

be called knowledge mining. The reason why it is called data mining instead of knowledge

mining is perhaps to emphasise the fact that it is applied on huge amount of data. It would

6

not be possible to fetch fruitful knowledge from such gigantic data sets without the help of

data mining.

Data mining can be seen as a process for extracting hidden and valid knowledge from

huge databases [13]. The highlighted words point to the essential characteristics of data

mining. These characteristics are further clarified as follows.

Data mining extracts knowledge which was previously unknown [14]. This means that

the extracted knowledge could not even be hypothesized in advance. The more unexpected

the knowledge generally the more interesting it is. There is no benefit of mining a big data

set to extract the knowledge which is very obvious. For example, regression analysis was

used at some point in time in the Vietnam war to predict the possible mortar attacks [44].

After extensive analysis of huge amount of data a conclusion was made that there was a

period during which increased level of mortar attacks could be predicted with reasonable

certainty. This period was during the new moon. Such analysis and discovery of knowledge

was absolutely useless since, everyone already knew that mortar attacks were much more

likely when it was dark.

The extracted knowledge needs to be valid. Supermarket chains usually have huge

number of items and transactions in their transactional databases. Some interesting asso-

ciations between few items can be discovered if someone looks into the database carefully.

However, such an association may not be a valid one in the sense that the items may not

appear together in sufficient number of transactions. Moreover, the appearance of one of

the items may not necessarily suggest the appearance of other items with sufficient certainty

in the whole transactional database.

Extraction of knowledge from a data set having a small number of records is not con-

sidered as data mining. Such knowledge can be obtained manually through an observation

and use of traditional data analysis. Extraction of knowledge from a huge data set is a

basic characteristic of data mining.

2.1.2 Comparison with Traditional Data Analyses

Often there is confusion among the end users about the differences between a traditional

data analysis and data mining. A basic difference is that, unlike traditional data analyses,

data mining does not require predefined assumptions. A difference between data mining

and traditional data analysis is illustrated with an example as follows [47, 44, 114, 52].

7

A regional manager of a chain of electronics stores may use traditional data analysis

tools to investigate the sales of air conditioners in different quarters of the year. The regional

manager can also use traditional data analysis tools to analyse the relationship between the

sales of computers and printers in different stores of his region. Both of these scenarios have

one thing in common: an assumption. In the first scenario the regional manager assumes

that the sales volume of air conditioners depends on the weather and temperature. In the

second scenario he assumes a relation between the sales of computers and printers. An

end user needs some sort of assumption to formulate a query in traditional data analysis.

Conversely, data mining lifts such barriers and allows end users to find answers to questions

that can not be handled by traditional data analysis. For example, the regional manager

could look for answers to questions such as: Why the sales of computers in few stores are

not as high as the sales of computers in other stores? How can I increase the overall sales

in all stores?

Among all traditional data analyses, statistical analysis is the most similar one to data

mining. Many of the data mining tasks, such as building predictive models, and discovering

associations, could also be done through statistical analysis. An advantage of data mining

is its assumption free approach. Statistical analysis still needs some predefined hypothesis.

Additionally, statistical analysis is usually restricted to only numerical attributes while

data mining can handle both numerical and categorical attributes. Moreover, data mining

techniques are generally easy to use. A combination of data mining and statistical techniques

can produce a more efficient data analysis.

2.1.3 Data Mining Steps

Some consider data mining as a synonym for another popular term Knowledge Discov-

ery in Database (KDD), while some believe data mining is an integral part of KDD [47].

Essential steps of KDD include Data Cleaning, Data Integration, Data Selection, Data Min-

ing, Pattern Evaluation and Knowledge Presentation [47, 44]. Each of these steps are also

briefly discussed as follows.

Data Cleaning

Data cleaning generally refers to the removal of natural noise and inconsistent data

from the database [47, 44, 52]. Words and numbers could be misspelled and entered er-

8

roneously in a database due to various reasons including typographical errors. Detection

and rectification of such errors is an essential part of KDD. Sometimes databases contain

missing values which may cause ineffective data mining if they are left unresolved. Missing

values are either replaced by the most likely value or deleted along with the whole record.

Another data cleaning issue arises from inconsistent data entries. An attribute “Soft Drink”

may have values such as “Pepsi”, “Pepsi Cola” and “Cola” which necessarily refer to the

same drink [44]. They need to be made consistent before the application of a data mining

technique.

Data Integration

Data integration (also known as data transformation) is the process of combining two

or more data sources into a uniform data set. Different data sources may use different

data models such as relational and object-oriented database model [47, 44, 52]. A two

dimensional data set is created from these various sources. From a relational data model

a two dimensional data set can be created in many ways including merging the relational

tables in a view and exporting the data into a flat file.

Sometimes a particular attribute can be called differently in different data sources.

For example, one data source may name an attribute as “Income”, while another source

may name the same attribute as “Salary”. Same values can also be stored differently in

different sources. For example, in one source values of the attribute “Sex” can be “Male”

and “Female”, whereas they can be “M” and “F” in another source. These anomalies are

resolved in the data integration phase.

Sometimes various data sources may store different information such as “Orders” and

“Customers” data. These data are also integrated in data integration phase. Data cleaning

and integration are sometimes together referred as data preparation [47, 44, 52].

Data Selection

In order to perform a particular data mining task all relevant attributes are selected

from the warehouse data set. This new data set comprising of these selected attributes are

used for data mining.

9

Data Mining

Data mining is the essential process of KDD which extracts previously unknown pat-

terns and trends from a huge data set without making any predefined hypothesis.

Pattern Evaluation and Knowledge Presentation

Some extracted patterns are obvious and unappealing, for example an increased likely-

hood of mortar attacks when dark during the Vietnam war. However, some other patterns

may be counterintuitive, interesting and useful. Discovered patterns are therefore evaluated

before they are presented to an end user in a user understandable form. Various visualization

and knowledge representation techniques are used to prepare a meaningful presentation.

2.2 Data Mining Tasks

There are some tasks that make use of data mining techniques, although they them-

selves are not data mining. These tasks are often mistakenly considered as data mining,

perhaps due to their close link to it. An example of such tasks is the detection of a fraudulent

credit card use [114], which we briefly outline as follows.

Credit card companies apply data mining techniques on data sets having large number

of previous credit card transactions. Some of these transactions may be known as fraudulent

which the credit card company uses to learn the patterns of fraudulent credit card uses.

An example of such patterns could be a purchase of gasoline for a small amount, followed

by another gasoline purchase for a bigger amount and other series of purchases for large

amounts [114]. What actually happens is the following: when a card is stolen it is usually

tested through a small purchase of gasoline at a pay-at-the-pump service station and then

used for bigger purchases if the card is found still active. The credit card company constantly

monitors each transaction of a credit card and matches the transaction trends with the

discovered patterns. This matching is generally done through some online pattern matching

operations. Discovery of the patterns is data mining. However, the detection of a fraudulent

card use through pattern matching is not data mining.

There are many data mining tasks, such as Classification, Association Rule Mining,

Clustering, Outlier Analysis, Evolution Analysis, Characterization and Discrimination [47,

52]. We briefly discuss few of them as follows.

10

Classification and Prediction

A data set may have an attribute called “class attribute” which refers to the category

of the records. For example, a patient data set may have a class attribute called “Diagnosis”

along with several other non-class attributes that describe various properties and conditions

of a patient. Class attribute is also known as labels. Records having class attribute values

are known as labelled records [47].

Classification is the process of building a classifier from a set of pre-classified (labelled)

records. It discovers a pattern (model) that explains the relationship between the class and

the non-class attributes [47]. A classifier is then used to assign (predict) a class attribute

value to new unlabeled records. Classifiers also help to analyze the data sets better. They

are expressed in different ways such as decision trees, sets of rules.

One of the techniques for building decision trees is based on information gain [85].

This technique first calculates the entropy (uncertainty) in estimating the class attribute

values in the whole data set. It then divides the whole data set into two parts, based on an

attribute, where each part contains a subset of values of the attribute and the other part

contains the set of remaining values of the attribute. The attribute value that sits in the

border of the two sets of values is also known as the splitting point.

Due to the division of the data set, the uncertainty in estimating the class attribute

value changes which depends on the distribution of the class values. For example, let us

assume that the domain size of the class attribute of a data set is two. In an extreme case,

if all records belonging to one division have one class value and all other records belonging

to the other division have the other class value then the uncertainty gets reduced to zero

resulting in the maximum information gain. The decision tree building algorithm picks

the best splitting point, among all possible splitting points of all non-class attributes, that

reduces the uncertainty the most. The best splitting attribute is the root node of a decision

tree and the best splitting point is the label on the edges. A reader can consult Figure 2.1

for better understanding. The same approach is applied again on each division of the data

set and this process continues until the termination condition is met, resulting in a decision

tree classifier.

We next describe the use of decision trees in understanding/analyzing a data set and

for classifying/predicting the class values of new unlabeled records. When a tree is used to

classify an unlabeled record, the record is first tested in the root of the tree. Depending on

11

>7.007

av rooms per

dwelling

<= 7.007

percentage low
income

>5.39 <= 5.39

av. room per
dwelling

<= 6.485 >6.485

top 20

(13/2)

bottom 80

bottom 80

(249/8)

top 20

(33/1)

(5)

Figure 2.1: An example of a decision tree. Squares represent internal nodes, the unshaded
circle represents homogeneous leaf where all records have the same class value and shaded
circles represent heterogeneous leaves.

the outcome of the test an edge from the root is taken and subsequent test is performed in

the next node. This procedure is repeated until the record arrives in one of the leaves of

the tree and the leaf class is assigned to the record. Classifiers are also used in analyzing

the patterns in a data set through a close observation of the classification rules. Classifiers

are sometimes used to predict the possible value of a missing attribute value of a data set.

If the attribute tested in a node is numerical then typically there are two edges from the

node. One of the edges is labelled “> c” while the other edge is labelled “<= c”, where c is a

constant from the domain of that attribute. If, on the other hand, the attribute is categorical

then there are typically a few edges from the node, each labelled by a category from the

attribute domain. Each leaf of the tree has a class associated with it. In homogeneous

leaves the leaf class appears in all the records from the training set (the data set from which

the tree has been built) that belong to that leaf. In heterogeneous leaves majority of the

records from the training set belong to the leaf class and only a few belong to another class.

An example of a decision tree is shown in Figure 2.1. The tree was built on the Boston

Housing Price dataset which is available from the UCI Machine Learning Repository [77].

Each record corresponds to a suburb and attributes include average number of rooms per

dwelling and percentage lower income earners. The class refers to the median house price in

a suburb and has two values, top 20% and bottom 80%. The root node tests the attribute

av rooms per dwelling. This is a numerical attribute and the left edge from the root denotes

the values greater than 7.007 while the right edge denotes values less than or equal to 7.007.

12

If the left edge is followed we arrive in a heterogeneous leaf containing 33 cases/records

from the training set where all but one belong to the top 20 %.

Association Rules Mining

In order to explain association rule mining we consider a set of transactions (records)

where each transaction consists of a list of items, which are categorical values, such as {milk,

coke, bread} [47]. Transactions may significantly vary in size and some transactions may

have only few items, whereas others may have many items. Another commonly used form

of the transactional data set is market basket data set where rows/records are transactions

of the same size, which is equal to the size of the set of all possible items. Each transaction

is a series of 0s and 1s, where a 0 for an item represents the absence of the item in the

transaction and a 1 represents the presence of the item.

Primary objectives of association rule mining are to obtain frequent item sets, and

association rules. If a set of items appears in a number of transactions which is more than

a user defined threshold than the set is called a frequent item set, with respect to the

threshold. However, if two sets of items are associated in such a way that the appearance

of one set of items in a transaction makes the appearance of the other set in the same

transaction highly expected then this is called an association rule.

An association rule can be represented as X ⇒ Y , where X and Y are mutually

exclusive subsets of items and X ,Y ⊂ I , where I is the set of all items of the data set. A

rule X ⇒ Y has a support factor s if at least s% of the transactions of the whole data

set satisfies the rule. A rule X ⇒ Y is said to have a confidence factor c if c% of the

transactions that satisfy X also satisfy Y .

An example of association rule is “computer ⇒ software [1%, 50%]” which says that

if a transaction contains “computer” then there is a 50% chance that it will also contain

“software”. Additionally, 1% of all of the transactions contain both of the items [47].

An association rule having high support and confidence is generally considered significant

and interesting. Significant rules are used to learn the buying patterns, to plan marketing

strategies and so on.

Association rule mining generally takes a transactional data set and other threshold

values (such as threshold confidence and threshold support) as input, and generates a set

of interesting association rules as the output. It can also be applied on many other types of

13

data sets such as a customer data set [47], and can discover association rules of the form

“age(20,...29) and income(>55) ⇒ buys(Sports Car),

[support = 2%, confidence = 60%]”.

Clustering

Clustering is the process of arranging similar records in groups so that the records

belonging to the same cluster have high similarity, while records belonging to different clus-

ters have high dissimilarity [47]. Unlike classification, clustering usually analyzes unlabeled

records. In many cases, a data set may not have a class attribute when it is initially col-

lected. Class labels are generally assigned to these records based on the clusters. Typical

applications of clustering include discovery of distinct customer groups, categorization of

genes with similar functionality and identification of areas of similar land use [47].

There exists a large number of clustering methods including partitioning, hierarchical,

density based, grid based and model based methods, shown in Figure 2.2. We briefly discuss

these methods as follows [47].

Density

Based Based Based

Grid Model
Hierarchincal Partitioning

Main Clustering Methods

Figure 2.2: Main Clustering Methods.

A partitioning method generally divides the records of a data set into k non-empty and

mutually exclusive partitions, where k is a user defined number. Note that k ≤ n, where

n is the number of the records. The method then uses an iterative relocation in order to

improve the quality of the partitions/clusters by grouping similar records in a cluster and

dissimilar records in different clusters. The two common heuristics used in this method are

k-means and k-medoids.

A hierarchical method can be further divided into two types, agglomerative and divi-

sive. An agglomerative hierarchical method first considers each single data object/record

as a separate cluster. Based on some similarity criteria it then merges the two most sim-

ilar records or groups of records in each successive iteration until it fulfills a termination

14

condition or all records are merged into one single cluster. On the other hand, the divisive

hierarchical clustering method starts with all records in a single cluster. In each iteration, it

splits a cluster into two clusters in order to improve the criteria that measures the goodness

of the overall clustering. Finally, the method stops when a termination condition is met or

each record is separated into a cluster.

A density based clustering forms clusters of dense regions where a high number of

records are located. It initially selects a core record that has large number of neighbor

records. The core record and all its neighbor records are included in a cluster. If a record r

among these neighbors is itself a core, then all neighbors of r are also added in the cluster.

The process terminates when there is no record left that can be added to a cluster. This

clustering technique is also used to filter out noise from a data set.

A grid based method performs all clustering operations on a grid like structure obtained

by quantizing the data space into a finite number of cells. The main advantage is a faster

processing speed which mainly depends on the number of cells.

Unlike conventional clustering, a model based clustering attempts to find a character-

istic description of each cluster, in addition to just clustering the unlabeled records. Each

cluster represents a concept or class. Some model based clustering technique such as COB-

WEB generates a hierarchical clustering in the form of a classification tree. Each node of

the classification tree refers to a concept in a hierarchical system. Each node also presents

a description of the concept that summarizes the records classified under the node.

2.3 Applications of Data Mining

2.3.1 Usefulness in General

Due to the development of information processing technology and storage capacity huge

amount of data is being collected and processed in almost every sector of life. Business orga-

nizations collect data about the consumers for marketing purposes and improving business

strategies, medical organizations collect medical records for better treatment and medical

research, and national security agencies maintain criminal records for security purposes.

Supermarket chains and departmental stores typically capture each and every sale transac-

tion of their customers. For example, Wal-Mart Stores Inc. captures sale transactions from

more than 2,900 stores in 6 different countries and continuously transmits these data to its

15

massive data warehouse, which is the biggest in retail industry, if not the biggest in the

world [14, 95, 112, 113]. According to Teradata, Wal-Mart has plans to expand its huge

warehouse to even huger, allegedly to a capacity of 500 tera bytes [95]. Wal-Mart allows

more than 3,500 suppliers to access its huge data set and perform various data analyzes.

For successful analyzes of these huge sized data sets various data mining techniques are

widely used by the organizations all over the world. For example, Wal-Mart uses its data

set for trend analysis [44]. In modern days organizations are extremely dependent on data

mining in their every day activities. Data mining techniques extract useful information,

which is in turn used for various purposes such as marketing of products and services,

identifying the best target group/s, and improving business strategies.

2.3.2 Some Applications of Data Mining Techniques

There is a wide range of data mining applications. A few of them are discussed as

follows.

Medical Data Analysis

Generally, medical data sets contain wide variety of bio-medical data which are dis-

tributed among parties. Examples of such databases include genome and proteome databases.

Various data mining tasks such as data cleaning, data preprocessing and semantic integra-

tion can be used for the construction of warehouse and useful analysis of these medical

databases [46].

Data mining techniques can be used to analyse gene sequences in order to find genetic

factors of a disease and the mechanism that protect the body from the disease. A disease can

be caused by a disorder in a single gene, however in most cases disorder in a combination of

genes are responsible for a certain disease. Data mining techniques can be used to indicate

such a combination of genes in a target sample. Data sets having patient records can also

be analyzed through data mining for various other purposes such as prediction of diseases

for new patients. Moreover, data mining is also used for the composition of drugs tailored

towards individual’s genetic structure [103].

16

Direct Marketing

In direct marketing approach a company delivers its promotional material such as

leaflets, catalogs, and brochures directly to potential consumers through direct mail, tele-

phone marketing, door to door selling or other direct means. It is crucial to relatively

precisely identify potential consumers in order to save marketing expenditure of the com-

pany. Data mining techniques are widely used for identifying potential consumers by many

companies and organisations including People’s Bank, Reader’s Digest, the Washington

Post and Equifax [44].

Trend Analysis

Trend analysis is generally used in stock market studies where the essential task is

the so called bull and bear trend analysis. A bull market is the situation where prices

rise consistently for a prolonged period of time, whereas a bear market is the opposite

situation [115].

Financial institutions require to realize and predict customer deposit and withdrawal

pattern. Supermarket chains need to identify customers’ buying trends and association rules

(i.e. which items are likely to be sold together). Wal-Mart is one of the many organizations

that uses data mining for trend analysis [44].

Fraud Detection

Fraudulent credit card uses cost the industry over a billion dollars a year [44, 36].

Almost all financial institutions, such as MasterCard, Visa, and Citibank, use data mining

techniques to discover fraudulent credit card use patterns [44]. The use of data mining

techniques has already started to reduce the losses. The Guardian (September 9, 2004)

published that the loss due to credit card fraud reduced by more than 5% in Great Britain

in 2003 [36]. Similarly mobile phone frauds are also very common all over the world.

According to Ericsson more than 15,000 mobile phones are stolen just in Britain every

month [36]. Data mining techniques are also used to prevent fraudulent users from stealing

mobile phones and leaving bills unpaid.

17

Plagiarism Detection

Assignments submitted by the students can be characterized by several attributes. For

example, the attributes for a programming assignment can be run time for a program,

number of integer variables used, number of instructions generated, and so on. Based on

the attribute values the submissions are analyzed through clustering, which groups similar

submissions together [22]. Submissions that are clustered together can be suspected for

plagiarism.

2.4 Privacy Issues Related to Data Mining

Every day we are leaving dozens of electronic trails through various activities such

as using credit cards, swapping security cards, talking over phones and using emails [15].

Ideally, the data should be collected with the consent of the data subjects. The collectors

should provide some assurance that the individual privacy will be protected. However, the

secondary use of collected data is also very common. Secondary use is any use for which

data were not collected initially. Additionally, it is a common practice that organizations

sell the collected data to other organizations, which use these data for their own purposes.

Nowadays, data mining is a widely accepted technique for huge range of organizations.

Organizations are extremely dependent on data mining in their every day activities. The

paybacks are well acknowledged and can hardly be overestimated. During the whole process

of data mining (from collection of data to discovery of knowledge) these data, which typically

contain sensitive individual information such as medical and financial information, often get

exposed to several parties including collectors, owners, users and miners. Disclosure of such

sensitive information can cause a breach of individual privacy. For example, the detailed

credit card record of an individual can expose the private life style with sufficient accuracy.

Private information can also be disclosed by linking multiple databases belonging to giant

data warehouses [34] and accessing web data [101].

An intruder or malicious data miner can learn sensitive attribute values such as disease

type (e.g. HIV positive), and income (e.g. AUD 82,000) of a certain individual, through

re-identification of the record from an exposed data set. We note that the removal of the

names and other identifiers (such as driver license number and social security number)

may not guarantee the confidentiality of individual records, since a particular record can

18

often be uniquely identified from the combination of other attributes. Therefore, it is not

difficult for an intruder to be able to re-identify a record from a data set if he/she has enough

supplementary knowledge about an individual. It is also not unlikely for an intruder to have

sufficient supplementary knowledge, such as ethnic background, religion, marital status and

number of children of the individual.

Public Awareness

There is a growing anxiety about delicate personal information being open to potential

misuses. This is not necessarily limited to data as sensitive as medical and genetic records.

Other personal information, although not as sensitive as health records, can also be consid-

ered to be confidential and vulnerable to malicious exploitation. For example, credit card

records, buying patterns, books and CDs borrowed, and phone calls made by an individual

can be used to monitor his/her personal habits.

Public concern is mainly caused by the so-called secondary use of personal information

without the consent of the subject. In other words, consumers feel strongly that their

personal information should not be sold to other organizations without their prior consent.

Recent surveys reflect this as discussed below.

The IBM Multinational Consumer Privacy Survey performed in 1999 in Germany,

USA and UK illustrates public concern about privacy [87]. Most respondents (80%) feel

that “consumers have lost all control over how personal information is collected and used by

companies”. The majority of respondents (94%) are concerned about the possible misuse

of their personal information. This survey also shows that, when it comes to the confidence

that their personal information is properly handled, consumers have most trust in health

care providers and banks and the least trust in credit card agencies and internet companies.

A Harris Poll survey illustrates the growing public awareness and apprehension regard-

ing their privacy, from survey results obtained in 1999, 2000, 2001 and 2003 [98]. The public

awareness regarding their privacy is shown in Table 2.1.

In 2004, the Office of the Federal Privacy Commissioner, Australia, engaged Roy Mor-

gan Research to investigate community attitude towards privacy [88]. According to the

survey, 81% of the respondents believe that “customer details held by commercial organi-

zations are often transferred or sold in mailing lists to other businesses”. Additionally, 94%

of the respondents consider acquisition of their personal information by a business they do

19

- 1999 2000 2001 2003
Concerned 78% 88% 92% 90%
Unconcerned 22% 12% 8% 10%

Table 2.1: Harris Poll Survey: Privacy Consciousness of Adults [98]

not know as a privacy invasion. Secondary use of personal information by the collecting

organization is considered as a privacy invasion by 93% of the respondents. Respondents

were found most reluctant to disclose details about finances (41%) and income (10%).

Public awareness about privacy and lack of public trust in organizations may introduce

additional complexity to data collection. For example, strong public concern may force

governments and law enforcing agencies to introduce and implement new privacy protecting

laws and regulations such as the US Executive Order (2000) that protects federal employees

from being discriminated, on the basis of protected genetic information, for employment

purposes [78]. It is not unlikely that stricter privacy laws will be introduced in the future.

On the other hand, without such laws individuals may become hesitant to share their

personal information resulting in additional difficulties in obtaining truthful information

from individuals.

Both scenarios may make the data collection difficult and hence may deprive the orga-

nizations from the benefits of data mining resulting in inferior quality of services provided

to the public. Such prospects equally concern collectors and owners of data, as well as

researchers.

Privacy Preserving Data Mining

Due to the enormous benefits of data mining, yet high public concerns regarding indi-

vidual privacy, the implementation of privacy preserving data mining techniques has become

a demand of the moment. A privacy preserving data mining provides individual privacy

while allowing extraction of useful knowledge from data.

There are several different methods that can be used to enable privacy preserving

data mining. One particular class of such techniques modifies the collected data set be-

fore its release, in an attempt to protect individual records from being re-identified. An

intruder even with supplementary knowledge, can not be certain about the correctness of

20

a re-identification, when the data set has been modified. This class of privacy preserving

techniques relies on the fact that the data sets used for data mining purposes do not nec-

essarily need to contain 100% accurate data. In fact, that is almost never the case, due to

the existence of natural noise in data sets. In the context of data mining it is important

to maintain the patterns in the data set. Additionally, maintenance of statistical parame-

ters, namely means, variances and covariances of attributes is important in the context of

statistical databases.

High data quality and privacy/security are two important requirements that a good

privacy preserving technique needs to satisfy. We need to evaluate the data quality and

the degree of privacy of a perturbed data set. Data quality of a perturbed data set can

be evaluated through a few quality indicators such as extent to which the original patterns

are preserved, and maintenance of statistical parameters. There is no single agreed upon

definition of privacy. Therefore, measuring privacy/security is a challenging task.

2.5 Conclusion

In this chapter we have given a brief introduction to data mining and its application.

We have also discussed the privacy issues related to data mining and the growing public

concern regarding their privacy. Due to the huge public concern we need privacy preserving

data mining techniques. In the next chapter we present a background study on privacy

preserving data mining.

21

Chapter 3

Privacy Preserving Data Mining -

A Background Study

In this chapter we present a background study on techniques for privacy preserving

data mining. In Section 3.1 a classification scheme and evaluation criteria is presented.

In Sections 3.2 and 3.3 we give a comprehensive overview of the existing techniques. The

fundamental approach and essence of each of these techniques are presented. Some com-

parative discussions about the techniques are also offered in order to present their strengths

and weaknesses. In Section 3.4 we give a comparative study of several privacy preserving

techniques in a tabular form. Finally, Section 3.5 presents a conclusion of the section.

3.1 Classification Scheme and Evaluation Criteria

A number of different techniques has been proposed for privacy preserving data mining.

Each of these techniques is suitable for a particular scenario and objective. In this section

we propose a classification scheme and evaluation criteria for these techniques. Our classifi-

cation scheme and evaluation criteria builds upon but do not strictly follow the classification

scheme and evaluation criteria proposed in [109].

Privacy preserving techniques can be classified based on the following characteristics.

• Data Distribution

• Data Type

22

• Privacy Definition

• Data Mining Scenario

• Data Mining Tasks

• Protection Methods

We illustrate these classification characteristics as follows.

Data Distribution

The data sets used for data mining can be either centralized or distributed. This does

not refer to the physical location where data is stored, but to the availability/ownership

of data. Centralized data set is owned by a single party. It is either available at the

computation site or can be sent to the site. However, distributed data set is shared between

two or more parties which do not necessarily trust each other with their private data, but

are interested in mining their joint data. Data owned by each party is a portion of the total

data set which is distributed among the parties. The data set can be heterogenous, i.e.

vertically partitioned, where each party owns the same set of records but different subset

of attributes. Alternatively, the data set can be homogenous, i.e. horizontally partitioned,

where each party owns the same set of attributes but different subset of records. Figure

3.1 shows this classification of the data sets.

Data Set

Centralized Distributed

Vertically

Partitioned

Horizontally

Partitioned

Figure 3.1: Classification of Data Sets Based on Distribution.

Centralized data are usually more complete than a portion of a distributed data, in

the sense that they contain sufficient number of records and relevant attributes to serve

23

the purpose of the data collection and mining. A data set having insufficient number of

records and/or attributes can also be considered centralized in case of the unavailability

of other data sets to share with. If such other data sets are available and the parties

decide to combine their data sets under a single ownership then the combined data set is

still centralized. However, mutual untrust and conflicts of interest usually discourage the

parties from combining such data sets.

We next give examples of centralized and distributed data sets. Two health service

providers such as hospitals may have portions of a horizontally partitioned data set. Mining

any of these portions may not be as fruitful as mining the joint data set. In distributed

data mining although the hospitals mine their joint data set, none of them discloses its data

to the other hospital. In another scenario two organizations such as a taxation office and a

social security office may have portions of a vertically partitioned data set.

Data Type

An attribute in a data set can be either categorical or numerical. Boolean data are a

special case of categorical data, which can take only two possible values, 0 or 1. Categorical

values lack natural ordering in them. For example, an attribute “Car Make” can have

values such as “Toyota”, “Ford”, “Nissan”, and “Subaru”. There is no straightforward way

of ordering these values. This fundamental difference between categorical and numerical

values forces the privacy protection techniques to take different approaches for them.

Privacy Definition

The definition of privacy is context dependant. In some scenarios individual data values

are private, whereas in other scenarios certain association or classification rules are private.

For example, we consider a scenario where a health service provider releases its patient

data set to facilitate research and general analyzes. They may consider sensitive attribute

values belonging to an individual as private. A privacy protection technique should prevent

a disclosure of such a sensitive attribute value. However, in another scenario two or more

organizations decide to collaborate by releasing their data sets to each other for mining.

They expect this collaboration to give them an advantage over the rest of their competitors

who did not participate in the collaboration. Nevertheless, the collaborating organizations

may not want to disclose some sensitive rules hidden in their corresponding data sets.

24

Therefore, in this scenario a privacy protection technique should prevent a disclosure of

sensitive rules.

Data Mining Scenario

There are two major data mining scenarios. In the first scenario organizations release

their data sets for data mining allowing unrestricted access to it. However, the individual

privacy is protected in the released data sets usually by data modification. In the second

scenario organizations do not release their data sets, but still allow data mining involving

their data sets. Typically, cryptographic techniques are used for privacy preserving data

mining in this scenario.

Data Mining Tasks

A data set contains various types of patterns. These patterns can be extracted through

a variety of data mining tasks such as classification, clustering, association rule mining,

outlier analysis, and evolution analysis [47]. In many occasions a user may need to perform

different data mining tasks on a released data set in order to discover interesting patterns.

Ideally, a privacy preserving technique should maintain the data quality to support all

possible data mining tasks and statistical analysis. However, it usually maintains the data

quality to support only a group of data mining tasks. The privacy protection techniques

can be classified based on the tasks which are supported by them.

Protection Methods

Privacy can be protected through different methods such as Data Modification and

Secure Multi-party Computation. Privacy preserving techniques can be classified based on

the protection methods used by them. This classification is shown in Figure 3.2.

Data Modification techniques modify a data set before releasing it to the users. Data

is modified in such a way that the privacy is preserved in the released data set, whereas the

data quality remains high enough to serve the purpose of the release. A data modification

technique could be developed to protect the privacy of individuals, sensitive underlying pat-

terns, or both. This class of techniques include noise addition, data swapping, aggregation,

and suppression.

25

Privacy Techniques

Addition Swapping
Aggregation Suppression

Computation
Secure Multi−party

Noise

Data Modification

Data

Figure 3.2: A Classification of Privacy Preserving Techniques.

Noise addition usually adds a random number (noise) to numerical attributes. This

random number is generally drawn from a normal distribution with zero mean and a small

standard deviation. Noise is added in a controlled way so as to maintain means, variances

and co-variances of the attributes of a data set. However, noise addition to categorical

attributes are not as straightforward as the noise addition to numerical attributes, due

to the absence of natural ordering in categorical values. Data swapping interchanges the

attribute values among different records. Similar attribute values are interchanged with

higher probability. All original values are kept within the data set, just the positions are

swapped. Note that in statistical database terminology, data swapping is often seen as a

special case of noise addition. The reason for that is - swapping two numerical values can

be seen as the addition of a number (the difference between the values) to the smaller value,

and subtraction of the same number from the larger value. Therefore, data swapping results

in the addition of noise having zero mean. Similar explanation can be given for swapping

categorical values. Aggregation refers to both combining a few attribute values into one, or

grouping a few records together and replacing them with a group representative. Finally,

Suppression means replacing an attribute value in one or more records by a missing value.

Secure Multi-party Computation (SMC) techniques encrypts the data sets, while still

allowing data mining tasks. Ideally, SMC techniques are not supposed to disclose any new

information other than the final result of the computation to a participating party. These

techniques are typically based on cryptographic protocols and are applied to distributed

data sets. Parties involved in a distributed data mining encrypt their data and send to

others. These encrypted data are used to compute the aggregate data, belonging to the

joint data set, which is used for data mining.

26

A classification scheme helps us to find the group of techniques that is suitable for a

scenario. Many such techniques for different scenarios have already been proposed. It is

unlikely to have a single privacy preserving technique that outperforms all other existing

techniques in all aspects. Each technique has its strength and weakness. Hence, a compre-

hensive evaluation of a privacy preserving technique is crucial. It is important to determine

the evaluation criteria and related benchmarks. We discuss some evaluation criteria as

follows.

1. Versatility refers to the ability of the technique to cater for various privacy require-

ments, types of data sets and data mining tasks. The more versatile a technique, the

more useful it is. Versatility includes the following.

• Private: Data vs Patterns

A group of privacy preserving techniques considers sensitive attribute values

as private, whereas another group considers sensitive patterns (such as some

sensitive association rules) as private. A versatile technique would consider both

individual data and some patterns as private.

• Data set: Centralized or Distributed (Vertical or Horizontal)

Usually privacy preserving techniques are suitable for either centralized or a

distributed data sets. However, some versatile techniques are suitable for both

types of data sets.

• Attributes: Numerical or Categorical (Boolean)

Many privacy preserving techniques can handle either numerical or categorical

(considering boolean as a special case of categorical) data. However, there are

many data sets, indeed, that have both types of data. Therefore, a versatile

technique which is capable of managing both types of data can be a perfect

choice for these data sets.

• Data Mining Task

A user initially may not know which patterns are interesting in a released data

set. He may need to carry out several data mining tasks such as classification, and

clustering on a released data set to discover interesting and useful information.

Privacy protection techniques are used on the original data sets before they are

released. Therefore, it is preferable that a privacy protection technique supports

27

as many data mining tasks as possible. Otherwise, the user can only perform

that data mining task which is supported by the privacy protection technique.

2. Disclosure Risk

Disclosure risk refers to the possibility of sensitive information being inferred by a

malicious data miner. It is inversely proportional to the level of security offered by

the technique. Since the primary objective of the use of a privacy protection technique

is to minimize the disclosure risk, the evaluation of the risk is essential. Evaluation of

a disclosure risk is also a challenging task, since it depends on many factors including

what is already known (the supplementary knowledge) to an intruder, and the nature

of the technique. For example, in a technique that protects sensitive association rules,

a disclosure risk might be measured by the percentage of the sensitive rules that

can still be disclosed. However, in a technique that adds noise to protect individual

records, a disclosure risk might be measured by the re-identification risk, a measure

used in security of statistical databases.

3. Information Loss

Information loss is usually proportional to the amount of noise added, and the level

of security. It is inversely proportional to data quality. One basic requirement of a

privacy preserving technique is its ability to maintain high data quality in a released

data set. Even the maximum level of privacy protection could turn out to be useless

if the data quality is not maintained.

The information loss is highly dependent on the data mining task for which the data

set is intended. For example, in mining association (classification) rules, information

loss could be measured by the percentage of rules that have been destroyed/created

by the technique, and/or by the reduction/increase in the support and confidence

of all the rules; for clustering, information loss can be evaluated by the variance of

the distances among the clustered items in the original database and the sanitized

database [109].

4. Cost

Cost refers to both the computational cost and the communication cost between the

collaborating parties [109]. Computational cost encompasses both preprocessing cost

28

(e.g., initial perturbation of the values) and running cost (e.g., processing overheads).

If a data set is distributed then communication cost becomes an important issue in

privacy preserving data mining. The higher the cost, the lower the efficiency of the

technique.

In Section 3.4 we illustrate these criteria by presenting a comparative study of a few

privacy preserving techniques. The techniques have been carefully selected so as to exem-

plify a broad range of methods. In the next two sections we present a background study on

Data Modification and Secure Multi-party Computation techniques.

3.2 Data Modification

Existing privacy protection methods for centralized statistical databases can be cate-

gorized in three main groups, based on the approaches they take, such as query restriction,

output perturbation, and data modification [1]. In a way, out of these privacy protection

techniques, data modification is the most straightforward one to implement. Before the

release of a data set for various data mining tasks and statistical analyses, it modifies the

data set so that individual privacy can be protected while the quality of the released data

remains high. After this modification of the data set we can use any off the shelf software

such as DBMS, and See5 to manage and analyse the data without any restrictions on pro-

cessing. That is not the case with query restriction and output perturbation. The simplicity

of data modification techniques has made it attractive and widely used in the context of

statistical database and data mining. Data modification can be done in many ways such

as noise addition, data swapping, aggregation, and suppression. We take an opportunity to

introduce the basic ideas of these techniques and brief background studies on them.

3.2.1 Noise Addition in Statistical Database

Noise addition techniques were originally used for statistical databases which were

supposed to maintain data quality in parallel to the privacy of individuals. Later on noise

addition techniques were also found useful in privacy preserving data mining. In this sub-

section we present background studies on noise addition techniques in statistical databases.

We discuss noise addition techniques used for privacy preserving data mining in the next

subsection.

29

In noise addition, generally a random number (noise) is drawn from a probability

distribution having zero mean and a small standard deviation. This noise is then added to

a numerical attribute in order to mask its original value. Generally noise is added to the

confidential attributes, of a microdata file before the data is released, in order to protect

the sensitive information of an individual. However, adding noise to both confidential and

non-confidential attributes can improve the level of privacy by making re-identification of

the records more challenging. The main objective of noise addition is to protect individual

privacy by masking the microdata while introducing the least amount of incorrectness in

it. The incorrectness in the statistic of a perturbed data set with respect to the statistic

of the unperturbed data set is termed as bias. Mulalidhar et al. [73] presented a useful

classification of various types of bias as follows.

• Type A Bias - Bias due to the change in variance of an individual attribute.

• Type B Bias - Bias due to the changes in relationship such as covariance, and corre-

lation between confidential attributes.

• Type C Bias - Bias due to the changes in relationship between confidential and non-

confidential attributes.

• Type D Bias - Bias due to the change in the underlying distributions of a data set.

The underlying distributions of a perturbed data set can be unpredictable if the

distributions of the corresponding original data set and/or the distributions of the

added noise is not multivariate normal. In such a case responses to queries involving

percentiles, sums, conditional means etc. can be biased. Although type A and type D

bias occurs for the same types of queries, the reason and extent of bias are different.

Early noise addition techniques were relatively unsophisticated and only protected against

bias in estimating the mean of an attribute. Gradually noise addition techniques evolved in

order to protect against various biases such as Type A, Type B, Type C and Type D bias.

Early noise addition techniques were applicable only to numerical attributes - since it

was not straightforward to add noise to a categorical attribute, which does not have any

natural ordering in it. In 1965 Warner proposed a noise addition technique for categorical

attributes of domain size two [111]. Warner presented the technique in order to provide

privacy for the participants of a survey. A survey participant provides the true value

30

of a categorical attribute with a given probability p which is less than 1. A reasonably

accurate estimate of the original proportion of the categorical values can be made from the

perturbed values. This technique can also be extended to estimate the distribution of a

categorical attribute having domain size bigger than two. However, since noise is added

to each attribute separately this technique does not preserve the correlations among the

attributes. In 1984 Traub et al. proposed another noise addition technique which provided

a balance between the level of security and data quality with the help of Chebyshev’s

inequality [102]. Nevertheless, it also adds noise to each numerical attribute separately,

and consequently the issue of preserving correlations remains unaddressed.

In an attempt to preserve the correlations along with the means and the distributions of

numerical attributes, Liew et al. developed another technique in 1985 [68]. They proposed

a probability distribution based noise addition technique which involves three steps. In the

first step it identifies the density functions of all attributes that need to be perturbed and

estimates the parameters of the density functions. In the second step it generates attribute

values for each of these attributes from the corresponding density function. Finally, in

the third step it maps and replaces the generated values of an attribute for the original

values. The first two steps are devoted to the preservation of means and distributions of the

attributes while the third step attempts to preserve the correlations among the attributes.

However, the method still adds noise to the attributes separately. The preservation of

correlations relies on the mapping and replacement step which may not be able to preserve

them in a controlled manner. This method suffers from Type A, Type B, Type C, and Type

D bias.

Kim, in 1986, proposed a technique that added correlated noise [56]. This technique

can be expressed as Yij = Xij + eij , where Yij , Xij , and eij are respectively the perturbed,

original and noise value of the ith record’s jth attribute. The covariance matrix of noise is

d ∗∑
XX , where

∑
XX is the covariance matrix of the attributes of the unperturbed data

set and d is a user defined constant. In addition to the correlated noise Kim used a linear

transformation to provide better security by minimizing disclosure risk in a released data

set. Muralidhar et al. noted that the transformation could also be used to eliminate Type

A bias in a released data set [73]. Additionally, since both the data set and the noise

are considered to have multivariate normal distribution the perturbed data set is free from

Type D bias. However, the perturbed data set still suffers from Type C bias.

In 1994 Tendick and Matloff also used a linear transformation in their proposed noise

31

addition technique, which is also free from Type A, Type B and Type D bias [100]. They

pointed out that just the addition of correlated noise is not good enough for the preservation

of conditional means. A conditional mean of an attribute is the mean of all values (of

the attribute) belonging to a subpopulation that fulfils a particular condition. They also

demonstrated the change of distribution of attribute values within a subpopulation due to

noise addition. It was suggested that on top of the addition of correlated noise a linear

transformation is required to preserve the distributions of attributes and the estimates

within a subpopulation.

In 1995 Kim and Winkler proposed a noise addition technique which builds upon the

basic concept of the technique proposed by Kim in 1986 [58]. The records having high

re-identification risk, even after the addition of correlated noise, are detected. A group of

similar records is obtained for each record having high re-identification risk. Attribute values

of the risky record are swapped with values of another record belonging to the same group in

order to increase the security. Finally, the technique provides a controlled distortion phase

where a series of complementary changes are made for any changes of values belonging to a

risky record. The controlled distortion phase is meant for preserving the estimates within

a subpopulation. They also presented formulae to obtain subpopulation estimates from the

data set perturbed by their technique. They assumed that both the data set and the noise

had multivariate normal distributions. However, in reality it is not unlikely that a data set

would have a general distribution. For data sets having general distribution they suggested

a transformation based on the Sullivan and Fuller method proposed in 1989 and 1990.

It involves the following steps - transforming general distribution to multivariate normal,

masking the transformed data, and transforming back the masked data to the original scale.

In 1999 Muralidhar et al. proposed an advanced noise addition technique called General

Additive Data Perturbation (GADP) [73], which was capable of maintaining the marginal

distributions of attributes, and relationships among all attributes - provided the data set

had a multivariate normal distribution. Although the GADP technique perturbs only the

confidential atributes, it takes both confidential and non-confidential attributes into ac-

count. Therefore, it maintains the relationships among confidential and non-confidential

attributes. The GADP technique allows a database administrator to precisely specify the

desired relationship among attributes after perturbation. It also allows the database ad-

ministrator to specify a desired level of security in the perturbed data set. GADP technique

is free from bias of Type A, B, C and D when it is applied on a data set having multivariate

32

normal distribution. However, when applied on a data set having non-normal distribu-

tion, GADP technique can not preserve the marginal distributions of confidential attributes

and/or the relationships between the attributes [92].

In 2002 Sarathy et al. proposed a copula based GADP technique called C-GADP, which

can preserve the marginal distributions, and monotonic relationships among all attributes,

even if the data set does not have a multivariate normal distribution [92]. A copula is a

function which takes as input the marginal distributions of individual attributes and outputs

the multivariate distribution of the data set. The basic idea of C-GADP is similar to what

was suggested in [58]. It involves three basic steps; transformation of existing distributions

to normal distributions, masking the transformed data by GADP technique, and finally

transformation of the masked data back to its original form. Sarathy et. al. reported that

the C-GADP technique may not preserve non-monotonic relationships among attributes.

If two attributes X and Y have a
⋃

-shaped or
⋂

-shaped relation between them, C-GADP

may not preserve it although X is purely a function of Y. Sarathy et al. also reported that

they used a normal copula which may not preserve “tail dependence” i.e. dependence in

extreme values of a bivariate distribution.

GADP lacks the ability to maintain statistical estimates of a data set having small

number of records, even if the data set has a multivariate normal distribution. There-

fore, Muralidhar et al. proposed an enhancement to GADP, Enhanced General Additive

Data Perturbation (EGADP), which performs well on both small and large data sets [74].

For more information on inference problem in statistical database we refer the reader to

surveys [1, 33].

3.2.2 Noise Addition in Data Mining

The noise addition techniques discussed in the previous section were designed for sta-

tistical databases and did not take into account requirements specific to data mining appli-

cations. In 2002, Wilson and Rosen [116] investigated the prediction accuracies of classifiers

built from data sets perturbed by existing statistical noise addition techniques such as SADP

(Simple Additive Data Perturbation), and GADP. They found that the classifiers obtained

from data sets perturbed by noise addition techniques including GADP, suffer from a lack

of prediction accuracy on a testing data set. This suggests the existence of another type of

bias, Data Mining bias, which is related to the change of patterns of a data set. Patterns

33

of a data set include clusters, classification and association rule sets, and subpopulation

correlations.

In 2000 Agrawal and Srikant proposed a noise addition technique which added random

noise to attribute values in such a way that the distributions of data values belonging

to original and perturbed data set were very different [3]. In this technique it is no

longer possible to precisely estimate the original values of individual records. However,

a reconstruction procedure is used to regenerate the distribution of the original values.

Based on the reconstructed distributions a decision tree is built. It has been shown that

the decision tree exhibits a good prediction accuracy, even for higher levels of noise. An

advantage of this technique is that it is also applicable to distributed data sets, as every

party is free to add random noise to its data set before sharing it with other parties. The

technique can also be applied in the scenario that has been considered in [111, 26, 97]. In this

scenario every survey participant can add random noise to his/her data before submitting

the randomized response to the central server. According to the technique the central server

can still reconstruct the distribution and thereby produce a reasonably accurate classifier.

Although each individual response is randomized, if the number of respondents is large the

distribution of the original data can be estimated with sufficient accuracy.

Du and Zhan presented a decision tree building algorithm which is used on a perturbed

data set, at a central server, collected through randomized responses of the clients/survey-

participants [26]. They also proposed a randomized response technique that can be used to

perturb multiple attributes. The proposed tree building algorithm is a modification of ID3.

ID3 algorithm discovers the best split point of the best splitting attribute at each node of a

decision tree. For that purpose ID3 calculates the entropy and the information gain of each

split point from the data set. Since the proposed algorithm is applied on a perturbed data

set it employs a probabilistic estimation of the original proportions of records . Thereby it

calculates the original information gain of a split point using the perturbed data set. Finally

it builds a decision tree having high prediction accuracy on an unperturbed testing data

set. Nevertheless, the technique restricts all attributes to have only binary data unlike the

distribution reconstruction based technique of Agrawal et. al [3]. Both of the techniques

focus on building decision trees and thereby producing a predictor.

Unfortunately any reconstruction of an original distribution, such as the one proposed

by Agrawal and Srikant [3], suffers from information loss. In order to minimize this in-

formation loss Agrawal and Aggarwal developed a novel reconstruction algorithm called

34

Expectation Maximization (EM) algorithm in 2001 [2]. This algorithm converges to the

maximum likelihood estimate of the original distribution. The EM algorithm works better

for data set having large number of records. Agrawal and Aggarwal proposed a privacy and

information loss quantifying method which considered the reconstructed distribution along

with the perturbed data as accessible information of an intruder. However, the information

loss quantifying method of Agrawal and Srikant [3] considered only the perturbed data as

accessible. Agrawal and Aggarwal showed that under the former consideration an intruder

can guess a data value with a higher level of accuracy.

In 2003 Evfimievski et al. expressed their hesitation in the strength of these distribution

reconstruction based techniques in privacy preservation [31]. They argue that based on the

distribution of noise one may be able to learn with high confidence that some of the records

satisfy a particular property. For example, when someone knows that the perturbed value

of an attribute “age” is 120 and the noise is drawn from a uniform distribution ranging

from -50 to +50, then s/he can infer with 100% accuracy that the actual age is at least 70.

This type of inference is known as interval based inference.

An interval based inference occurs when a reasonably small interval, into which the

sensitive value must fall, can be estimated. The effectiveness of noise addition techniques

was questioned, also by Li et al., in preventing interval based inference in the context

of sum queries [66]. They proposed a noise addition technique based on a new type of

distribution, called ε-Gaussian distribution, instead of traditional Gaussian distribution.

Evfimievski et al. proposed a formulation of privacy breach based on the difference in

knowledge of an intruder before and after the release of a perturbed value [31]. They also

proposed a methodology called “amplification” to limit the breach of privacy, unless any

knowledge of the distribution of original data set is released. “Amplification” is catered for

association rule mining problem, making use of a modification of the algorithm proposed

by Evfimievski [32].

In 2004 Zhu and Liu [121] proposed a general framework for randomization using a

well studied statistical model called mixture models. According to this scheme perturbed

data are generated from a distribution (not from the addition of noise to original data) that

depends on factors including the original data. Their randomization framework supports

privacy preserving density estimation. It estimates the original data distribution from the

perturbed data. Zhu and Liu showed that the noise addition schemes used in some other

studies [3, 2, 31] were special cases of their framework. A significant drawback of these

35

techniques is that a data miner can only learn the original distributions of attribute values

from a perturbed data set. S/he can not expect to extract other original information such

as classification rules and clusters of records. Some data swapping and noise addition

techniques allow a data miner to perform better data investigation.

Zhu and Liu argue that their framework is flexible in the sense that data and noise can

be continuous or discrete and they can be of different types, i.e. one discrete and another

continuous. Moreover, the distribution from which the perturbed data are drawn can be

general or any particular type such as normal distribution.

Kargupta et al. questioned the usefulness of additive noise perturbation techniques in

preserving privacy [54, 53, 20, 55, 72]. They proposed a spectral filtering technique which

makes use of the theory of random matrices to produce a close estimate of an original data

set from the perturbed (released) version of the data set. They assume that the distribution

of noise and the perturbed data set are known to the user. From the distribution of noise

the theoretical bounds of eigenvalues, λmin and λmax for the noise matrix are estimated -

using fundamental properties of random matrices. The noise matrix is the matrix, elements

of which are the random noise values added to the original data set. The filtering technique

then calculates the eigenvalues and the eigenvectors of the covariance matrix of the released

data set.

Out of these eigenvalues those which fall within the range of λmin and λmax are the

noisy eigenvalues, whereas the remaining are the eigenvalues related to the actual data set.

Based on these two groups of eigenvalues and corresponding eigenvectors, the covariance

matrix of the released data set is decomposed into two matrices. One matrix is related to

the random noise part and the other matrix is related to the actual data part. Finally a

close estimate of the original data set is made - by using the released data set along with

the eigenvalues, the eigenvectors and the covariance matrix all related to the actual data

part.

We argue that if the privacy is defined as the uncertainty in estimating a sensitive

attribute value belonging to an individual, then noise addition techniques can still be con-

sidered safe. This is because of the fact that the filtering technique can not generate an

estimate of the original data set with 100% accuracy, resulting in an uncertainty in estimat-

ing original values. Besides, the filtering technique is based on some assumptions including

the one that considers the added noise and the unperturbed data set are uncorrelated. This

is the case for some noise addition techniques such as the one proposed by Agrawal [3], but

36

in many techniques [73, 92, 58] they are correlated.

Filtered data set is obtained from a perturbed data set using a filtering technique.

Although it is unlikely to be able to reproduce an original data set using a filtering technique,

generally the data quality of a filtered data set could be better than the data quality of

the perturbed data set - depending on the amount and type of noise added during the

perturbation. For example, mean of an attribute in a filtered data set (compared to the

mean of the attribute in the perturbed data set) can be close to the mean of the attribute in

the original data set. The lower the amount of noise the better the quality of a filtered data

set should be. We believe that a filtering technique can better be used on a released data

set by an honest data user who is mainly interested in the extraction of general patterns

and statistics.

Kargupta et al. conjectured that multiplicative noise could be a better privacy preserv-

ing data modification technique. In 2003 Kim and Winkler investigated the data quality

and the level of privacy in a data set perturbed by multiplicative noise [59]. They con-

sidered two multiplicative noise perturbation techniques. The first technique involves the

generation of random numbers having mean 1 and a small variance, and multiplication of

the original data by these generated numbers. The second technique embraces the following

steps - logarithmic transformation of original data, computation of covariance matrix of the

transformed data, generation of random numbers having mean 0 and variance/covariance

equals to c (a user defined constant) times the variance/covariance of the transformed data,

addition of the generated noise to the transformed data, and performing an antilog of the

noise added data. Kim and Winkler apply the second technique with two different c values,

c=0.01 and c=0.10. They mask a data set by all these techniques. Means and variances

of masked data sets are compared with the means and variances of the unmasked data

set. These comparisons are made in order to evaluate the usefulness of the techniques in

maintaining the data quality. However, neither of these techniques is found to be clearly

superior to the other.

We note that if the results presented by Kim [59] are studied and compared with the

some other results proposed by Muralidhar et al. [74, 92, 73], then they clearly explain the

relative inferiority of multiplicative noise techniques in relation to additive noise techniques

in maintaining data quality. Multiplicative noise techniques can provide a good level of pri-

vacy as conjectured by Kargupta et al. [55], but the additive noise perturbation techniques

are more effective in maintaining data quality which is a primary requirement of any data

37

sets. Therefore, noise addition techniques are widely used in almost all areas of privacy

preserving data mining including classification, clustering, and association rule mining.

The concept of association rule mining has been discussed in Chapter 2 in details.

Many privacy preserving association rule mining techniques have been proposed recently

[82, 110, 89, 83, 80, 81, 120, 96, 94]. In 2002 Evfimievski et al. proposed a novel noise

addition technique for privacy preserving association rule mining [32]. In addition to the

perturbation of the items, the technique also inserts many false items into a transaction in

order to reduce the disclosure risk of an item set belonging to the transaction. Additionally,

a method was also proposed for estimating an item set’s support in the original data set

while only the perturbed data set is available. Evfimievski et al. also gave a formal definition

of privacy breach. If the appearance of an item set A in a perturbed transaction makes the

probability of the appearance of an item a ∈ A in the corresponding unperturbed transaction

higher than a user defined threshold θ, then disclosure of A is a privacy breach of level θ.

Evfimievski showed that the noise addition techniques proposed by R. Agrawal et al. and

D. Agrawal et al. [3, 2] may not be good enough to protect privacy in the context of

association rule mining, if the number of possible items is very big. It is possible that

an original item set can be left unchanged in several transactions of a perturbed data set

having a huge number of transactions, even if the original items are perturbed with high

probability. On the contrary it is almost impossible that an item set, created artificially as

a result of randomization, can appear even in few transactions - if the number of possible

items (domain of items) is very big. Therefore, if an item set appears in a notable number of

transactions then an intruder can presume its existence in the corresponding unperturbed

transactions with high certainty. Thus, the privacy of some transactions could be infringed.

In 2002 Rizvi and Haritsa also used the same approach of insertion of false items in

order to preserve privacy in a market basket database [89]. In a market basket database

rows are the purchase records of customers whereas, columns are the items sold by a super-

market. Each row is represented by a fixed-length series of 1s and 0s, where 1s represent

purchase of corresponding items and 0s represent no purchase. Rizvi and Haritsa proposed

a perturbation technique which left the purchase status of an item unchanged with a user

defined probability p, and flipped it with a probability 1 − p. Flipping a 0 to 1 means

insertion of a new item whereas, flipping a 1 to 0 means deletion of an existing item. They

pointed out that the disclosure of a 1 is more serious privacy breach than the disclosure of

a 0.

38

The techniques discussed so far try to protect the disclosure of any item set, belonging

to a transaction, with high certainty while they aim to mine accurate association rules.

However, in some scenario the perturbation techniques aim to protect some sensitive asso-

ciation rules from being disclosed. An example of such scenario is multi-party cooperative

association rule mining, where few organizations share their transactional databases for

rule mining. This cooperation usually benefits each organization in mining more fruitful

association rules. However, there could be some sensitive rules hidden within a database

belonging to an organization, which may not want to share the rules with others. Therefore,

disclosure of such rules may be considered as a breach of privacy.

In order to hide the sensitive rules of a data set noise is added (i.e. few items are

changed or deleted) in a way so that the supports of the sensitive rules become lower than

the minimum support level. This idea was introduced by Atallah et al. in 1999 [8], and

has been used in several techniques [83, 82, 81]. In 2003 Oliveira and Zäıane proposed a

perturbation technique that took the similar approach to hide sensitive rules [83]. The

proposed algorithm needs only one scan over the transactional data set regardless of the

size of the data set, and the number of sensitive rules that need to be protected. For a given

sensitive rule the algorithm chooses an item for perturbation. The chosen item is perturbed

in the required number of transactions among the list of transactions that support the

rule. Shorter sized transactions have the lesser combinations of rules. Therefore, shorter

transactions are chosen for the perturbation to minimize the impact of noise addition.

Besides, the algorithm checks if there is an item common between two or more sensitive

rules. If there is such a common item then the algorithm chooses to perturb that item in

order to hide all rules having the item in common. This way the number of modifications

are minimized in order to maintain both high data quality, and privacy of sensitive rules.

Natwichai et al. proposed an algorithm for hiding classification rules [76]. All classi-

fication rules discovered from an original data set are presented to the data owner. He/she

detects the sensitive rules. Based on the remaining non-sensitive rules and other extracted

properties of the data set a decision tree is built, which is eventually used to generate a

perturbed data set.

Saygin et al. perturbed an item by replacing it with an unknown value i.e. a “?”

symbol instead of modifying/deleting the item - for preserving privacy of sensitive rules

[94, 93]. They argued that in many situations it could be desirable to replace an item by

an unknown value instead of a false value. Replacing the original item by a false one can

39

guide to obtain misleading rule which can be dangerous in some cases. For example, if such

misleading rules are obtained from a medical data set used for diagnosis purpose, it can

create a serious harm. Saygin et al. proposed algorithms to preserve privacy of sensitive

rules by reducing their support, and by reducing their confidence in the perturbed data set

[94].

Agrawal and Haritsa [4] proposed a framework for designing perturbation techniques.

They showed that many prior techniques differ only in the elements of a matrix used in

their framework and that new ones can be constructed by choosing appropriate matrix

elements. They proposed a technique that provides highly accurate mining results for

identifying frequent item sets. Agrawal et al. [5] showed that mining of association rules

can take significantly longer time on a perturbed data set than on an original data set.

They proposed an algorithm for achieving high degree of privacy and accuracy requiring

relatively shorter time for mining.

3.2.3 Data Swapping

Data swapping techniques were first devised by Dalenius and Reiss in 1982, for categor-

ical values modification in the context of secure statistical databases [18]. The main appeal

of the method was it keeps all original values in the data set, while at the same time makes

the record re-identification very difficult. The method actually replaces the original data set

by another one, where some original values belonging to a sensitive attribute are exchanged

between them. This swapping can be done in a way so that the t-order statistics of the

original data set are preserved. A t-order statistic is a statistic that can be generated from

exactly t attributes. In [86] a new concept called “approximate data swap” was introduced

for practical data swapping. It computes the t-order frequency table from the original data

set, and finds a new data set with approximately the same t-order frequency. The elements

of the new data set are generated one at a time from a probability distribution constructed

through the frequency table. The frequency of already created elements and a possible new

element is used in the construction of the probability distribution. An introduction to the

existing data swapping techniques can be found in [75, 35].

Inspired by existing data swapping techniques used for statistical databases a new

data swapping technique has been introduced for privacy preserving data mining, where the

requirement of preserving t-order statistics has been relaxed [28]. The technique emphasizes

40

the pattern preservation instead of obtaining unbiased statistical parameters. It preserves

the most classification rules, even if they are obtained by different classification algorithms.

The noise is added to the class, i.e. the target attribute of a classifier, instead of all other

attributes in the data set. As the class is typically a categorical attribute containing just

two different values, the noise is added by changing the class in a small number of records.

This is achieved by randomly shuffling the class attribute values belonging to heterogeneous

leaves of a decision tree. If a leaf corresponds to a group of records having different class

attribute values, then the leaf is known to be a heterogeneous leaf.

3.2.4 Aggregation

Aggregation is also known as generalization or global recoding. It is used for protecting

an individual privacy in a released data set by perturbing the original data set prior to its

release. Aggregation replaces k number of records of a data set by a representative record.

The value of an attribute in such a representative record is generally derived by taking the

average of all values, for the attribute, belonging to the records that are replaced. Due

to the replacement of k number of original records by a representative record aggregation

results in some information loss. The information loss can be minimised by clustering the

original records into mutually exclusive groups of k records prior to aggregation. However, a

lower information loss results in a higher disclosure risk since an intruder can make a better

estimate of an original value from the attribute value of the released record. An adjustment

of the cluster size i.e. the number of records in each cluster can produce an appropriate

balance of information loss and disclosure risk [67]. Another method of aggregation or

generalisation is transformation of attribute values. For example, an exact date of birth can

be replaced by the year of birth, an exact salary can be replaced rounded in thousands. Such

a generalisation makes an attribute values less informative. Therefore, an use of excessive

extent of generalisation can make the released data useless. For example, if an exact date

of birth is replaced by the century of birth then the released data can become useless to

data miners [49].

3.2.5 Suppression

In suppression technique sensitive data values are deleted or suppressed prior to the

release of a microdata. Suppression is used to protect an individual privacy from intruders’

41

attempts to accurately predict a suppressed value. An intruder can take various approaches

to predict a sensitive value. For example, a classifier, built on a released data set, can be

used in an attempt to predict a suppressed attribute value [48]. Therefore, sufficient number

of attribute values should be suppressed in order to protect privacy. However, suppression

of attribute values results in information loss. An important issue in suppression is to

minimize the information loss by minimizing the number of values suppressed.

For some applications, such as medical, suppression is preferred over noise addition

in order to reduce the chance of having misleading patterns in the perturbed data set.

Suppression has also been used for association and classification rule confusion [89, 94].

3.3 Secure Multi-Party Computation

In many situations mining the joint data belonging to several parties is crucial. At

the same time keeping the data owned by individual parties private is compulsory due

to various reasons such as laws, mutual untrusts and interests of the parties. Examples of

such situations include cooperation among different health service providers, manufacturers,

and government bodies such as a taxation office and a social security department. Health

service providers such as hospitals can be interested to mine their joint data for better

diagnosis and treatment. However, they may not be able to disclose their data due to

some legal obligation for preserving privacy of the patients. Similarly, even competing

manufacturers may want to mine their joint data to discover interesting relations among

their manufactured items. They may be interested to see which of their items are used

together in a final product. Nevertheless, they can be reluctant to disclose their data in

order to protect their private business information. A taxation office and a social security

office may need to mine their joint data set for discovering interesting patterns involving

both data sets - without disclosing them.

Data modification for privacy preserving data mining takes the approach to modify

data before releasing it. In this approach once the data set is released the user has com-

plete freedom to use the high quality data for any kind of analysis. Multiple parties having

different portions of a data set can also perform data modifications on their corresponding

data sets for getting a more useful combined data set [32, 89]. However, data modification

techniques do not protect every single information other than the final result of a computa-

tion. However, such protection could be a basic requirement for a multi-party cooperation

42

in some scenarios. In the absence of a reliable privacy protection technique to fulfill this

requirement, parties may not have any option to cooperate. As a result they are forced to

deprive themselves from the benefits of data mining. Therefore, techniques based on a more

conservative cryptographic approach are often used in this scenario. These techniques are

commonly known as Secure Multi-party Computation (SMC) techniques.

Any computation performed by two or more mutually untrusted parties can be termed

as Secure Multi-Party Computation (SMC), where parties are interested to compute a

result from the union of data owned by each individual party [23]. However, none of the

parties wants to reveal its data to any other party. The concept of SMC was originally

introduced by Yao in 1982 [119]. It has been extensively studied since then. Ideally, SMC

is supposed to reveal to a party just the result of the computation and the data owned

by the party. However, in practical applications this requirement is sometimes relaxed in

order to have a better performing algorithm, considering a disclosure of some insensitive

information as acceptable [17]. SMC has an application in various areas including privacy

preserving data mining, security of statistical databases, and private information retrieval.

A number of SMC algorithms for various data mining tasks has been presented in last few

years [41, 104, 51, 108, 106, 118, 25, 24, 71, 70, 105, 91, 107, 84]. Most of these algorithms

make use of some primitive computations such as secure sum, secure set union, secure size

of set intersection and secure scalar product.

Secure sum adds values stored in different parties without letting them know any new

information apart from the sum of the values. If there are s number of parties, where

the party i has a value xi - then secure sum discloses the value of x =
∑s

i=1 xi to all

parties. Secure set union computes the union of items belonging to a group of parties.

Similarly secure size of set intersection discloses |S1
⋂

S2......
⋂

Sn|, where Si is the set of

items belonging to the party Pi. Secure scalar product calculates
∑n

i=1 xi× yi, where party

P1 has the vector −→X = 〈x1, x2,xn〉 and party P2 has the vector −→Y = 〈y1, y2,yn〉
[17].

Various data mining tasks can be reduced to these primitive computations. For exam-

ple, privacy preserving association rule mining can be reduced to a secure scalar product

[104, 17]. An essential step for association rule mining is to compute the support count for

an item set Is. If we find the support count is greater than a given threshold, then Is is

known as a frequent item set which is used in mining association rules. Now, let us consider

that a market basket data set is vertically partitioned into two data sets belonging to two

43

different parties. Items of each transaction are split between the parties. The support count

of Is is exactly the same as the scalar product of the two vectors −→X = 〈x1, x2,xn〉, and
−→
Y = 〈y1, y2,yn〉 belonging to the parties, where n is the number of transactions. This

is illustrated as follows.

Suppose party 1 has an item set {a1,ak} of size k and party 2 has another item set

{b1,bl} of size l. Let, the subset of the item set Is belonging to party 1 be {a1, a2, a3},
and the subset belonging to party 2 be {b1, b2}. Suppose zij is the value of the jth item

of the ith transaction. The meaning of zij = 1 is the presence of the jth item in the ith

transaction, and zij = 0 means the absence of the item in the transaction. An element of the

vector −→X = 〈x1, x2,xn〉, xi is computed as
∏3

j=1 aij . Similarly an element of the vector
−→
Y = 〈y1, y2,yn〉, yi is computed as

∏2
j=1 bij . The scalar product of the vectors −→X and −→Y

can be computed as −→X.
−→
Y =

∑n
i=1 xi ∗ yi. The result of the computation is nothing but the

support count of the item set Is in the combined data set. Therefore, a privacy preserving

association rule mining can be reduced to a secure scalar product. Similarly many other

privacy preserving data mining tasks can be reduced to primitive computations of the SMC

problem. For horizontally partitioned data the computation of frequent itemsets reduces to

the computation of secure set union [51].

Moreover, secure sum is used in privacy preserving data mining such as privacy pre-

serving association rule mining in horizontally partitioned data sets [17]. Secure sum is

often used to demonstrate the concept of SMC. We illustrate the basic idea of secure sum as

follows. Suppose there are s number of parties, where s ≥ 3, and the party i has the value

xi. Secure sum computes the value of x =
∑s

i=1 xi, without letting any party know any new

information apart from the result of the computation. The sites are numbered uniquely

from 1 to s. The site 1 generates a random number R uniformly chosen from the range

[0..n], where the sum x is known to have a range [0..n]. Site 1 then computes R1 = (R+x1)

mod n, and sends R1 to site 2. Since R is chosen uniformly from the range [0..n], R1 is also

uniformly distributed over the same range. Thus, site 2 does not learn anything about the

value x1. Site 2 similarly computes R2 = (R1 + x2) mod n, and sends R2 to site 3. Finally

site s receives Rs−1 from site s− 1. It computes Rs = (Rs−1 + xs) mod n, and sends Rs to

site 1. Site 1 then calculates x = (Rs − R) mod n, and sends x to all parties. Note that

each party is assumed to have used its correct value xi. Thus, secure sum ensures that all

parties can learn the final result of the computation without learning anything else new -

unless there is a collusion.

44

Site (k− 1) and site (k + 1) are two neighbors of site k. If these two neighbors collude

then it is possible for them to disclose the value of site k. Site k−1 sends Rk−1 to site k, and

site k sends Rk to site k + 1. From this information the colluding neighbors can precisely

learn the value of site k, xk = (Rk − Rk−1). This kind of security threat can be prevented

by extending the protocol, provided majority of the parties/sites are honest. According to

the extended protocol each site divides its value into m shares. The sum of each share is

computed separately. Finally the ultimate result can be computed by adding the sums of

all shares. The ordering of sites are changed for each share, so that none of the sites has

the same neighbor twice. By increasing the number of shares we can increase the required

number of dishonest parties to subvert the protocol. Collusion is a serious threat to secure

multi-party computation, especially when a big number parties participate in the collusion.

An association rule mining algorithm is proposed in [41] which is secured against

malicious participants. It introduces the concept of k-privacy, which restricts the disclosure

of any information involving less than k participants. However, the algorithm suffers from

the drawback of not considering collusion.

Many SMC techniques have been presented for performing various data mining tasks

such as classification, clustering, and association rule mining [70, 50, 104]. Clifton et al.

note that different data mining tasks often perform similar elementary computations at

various stages [17]. They argue that presenting a separate technique to each specific data

mining task may not be a feasible solution for the industries in real world. Therefore, they

initiate to build a toolkit having a number of components that can be assembled in various

ways for developing more complex, application specific, privacy preserving techniques. Such

a sophisticated toolkit can make various distributed privacy preserving data mining tasks

industry feasible. This idea is also supported in [51]. We briefly describe some privacy

preserving data mining techniques in the following paragraphs.

Secure multi-party computation for mining association rules has been studied in [41,

104, 51, 108]. The task here is to develop a SMC for computing the global support count,

of an itemset, which can be used to find the global frequent itemsets (GFIs). GFIs are the

itemsets having global support count greater than a user defined threshold. The technique

proposed in [108] relies on the fact that a GFI has to be a frequent itemset in at least

one of the partitions of a horizontally partitioned data set. In this technique, all maximal

frequent itemsets (MFIs) of each partitions are locally computed by the parties, where an

MFI is a frequent itemset which is not a subset of another frequent itemset. The union

45

of all these local MFIs is then computed by a trusted third party, which takes encoded

local MFIs from the parties as inputs. The support counts of all possible subsets of each

of the MFIs belonging to the union are computed by the parties locally. Finally, the global

support count for each itemset is computed by summing up all the local support counts for

the itemset, using the secure sum computation. GFIs can be used for various purposes such

as the discovery of association rules, strong rules, correlations, and sequential rules.

A secure multi-party computation function for naive Bayesian classifier on horizontally

partitioned data that relies on the secure sum was proposed by Kantarcoglu and Vaidya

[51]. They also proposed an extension that takes a logarithm based approach to enhance

the security. Building a decision tree on horizontally partitioned data, based on oblivious

transfer protocol was proposed by Lindell and Pinkas [70]. The protocol uses the well known

ID3 algorithm for building decision trees. Each party performs most of the computations

independently, on the database that it owns. This increases the efficiency of the protocol.

Finally the results obtained from these independent computations are combined using a

cryptographic protocol.

Secure functions for vertically partitioned data relying on secure scalar product were

proposed in [106, 118]. The protocol proposed by Vaidya and Clifton builds a model where

each party has a random share of the model [106]. The parties collaborate to classify an

instance. Only the class of each instance is disclosed as a result of the use of the protocol.

The model generated from the combined data is not disclosed. Such a discloser is often

unwanted due to legal and/or commercial issues. However, the classifier can be reverse-

engineered from the knowledge of class values belonging to a sufficient number of instances.

A solution to building a decision tree on vertically partitioned data was presented by Du

and Zhan, based on a secure scalar product [25]. In order to increase the performance,

they used a semi-trusted commodity server that belongs to a third party.

A method for secure multi-party computation of k-means clustering on vertically par-

titioned data was presented by Vaidya and Clifton [105]. The method makes use of some

secure primitive computations such as secure sum, and secure comparison. Regression on

vertical data was considered in [91, 24], while secure computing of outliers for horizontally

and vertically partitioned data was studied in [107].

46

3.4 Comparative Study

Generally Secure Multi-party Computation techniques tend to incur a significantly

higher running and communication cost, but also to provide much higher level of security.

It does not disclose anything other than the final result such as the classification rules,

clusters, and association rules. Therefore, it is suitable in a particular scenario where

multiple parties agree to cooperate for just the final result extraction from their combined

data set. However, in a scenario where a data set is supposed to be released to facilitate

various research and extract general knowledge, Data Modification is the obvious choice.

The definition of privacy breach is also relaxed in this scenario. Data modification usually

incur less computational cost, and less information loss as well. In Table 3.1, we compare

few techniques against the evaluation criteria presented in Section 3.1.

3.5 Conclusion

In this chapter, we introduced privacy preserving data mining and briefly presented

two classes of techniques: Data Modification and Secure Multi-party Computation. These

techniques are used in a wide range of scenarios. In the next four chapters we present a

novel privacy preserving technique which uses a Data Modification approach. The technique

considers the class attribute of a data set as sensitive, and can be applied on data sets

having both categorical and numerical attributes or any of them. It preserves the patterns

of classification rules along with the statistical parameters in the released data set. In

Chapter 4 we present techniques for noise addition to a class attribute.

47

Name Versatility Discl. Info. Cost
Private: Dataset: Attributes: Data Risk Loss
Data Central Categorical Mining
/Rules /Distributed /Numerical Task

(Horizontal /Boolean
/Vertical)

Outlier Data Distributed Both Outliers Very None High
Detection [106] (both) Low
Association Data Distributed Boolean Assoc. Very None Mod.
Rules [104] (vertical) Rules Low
Randomized Data Both Numerical Class. Low Mod. Low
Noise [3]
Correlated Data Centralized Numerical Clust., Mod. Low Low
Noise [73] Class.
Decision Data Centralized Both Class. Mod. Low Low
Tree Noise [28]
Randomized Data Both Binary Class. Low Mod. Low
Response [26]
Randomized Data Both Numerical Density Low Mod. Low
Response [121] Esti.
Secure Data Distributed Numerical Assoc. Low None Mod.
Toolkit [17] (Both) rules, &

Clust.
SMC [104] Data Distributed Numerical Assoc. Very None Mod.

(Vertical) rules Low
SMC [51] Data Distributed Numerical Class Very None Mod.

(Horizontal) Low
Association Rules Centralized Boolean Assoc. Low Mod. Low
Rules [83] Rules

Table 3.1: Privacy Preserving Techniques - Comparative Study

48

Chapter 4

Class Attribute Perturbation

Technique

4.1 The Essence

Considerations

We consider a data set as a two dimensional table, where the rows (records) correspond

to individuals (cases) and columns (attributes) correspond to the properties that describe

an individual. Out of these attributes one is the class attribute, which represents the class

or category of a record. Typically, it is a categorical attribute with a small domain size.

For example, in a patient data set “diagnosis” can be a class attribute, having the domain

{HIV positive, HIV negative} and the non-class attributes can be various properties of the

patients. An example of such a data set is the Wisconsin Breast Cancer (WBC) data set

available from the UCI Machine Learning Repository [77].

Such a data set often needs to be released to different parties for various purposes such

as research and treatment. These parties need to have access to the data set for performing

various data mining and statistical analyses. Since one of the most commonly used data

mining technique is classification, we consider that the main purpose of such a release is to

allow the users to perform classification by a decision tree.

We primarily consider that a class attribute value, such as “HIV Positive”, belonging

to an individual is confidential. Therefore, the disclosure (with 100% certainty) of the

class attribute value belonging to an individual is considered as a breach of privacy. Such

49

a disclosure is possible through record re-identification by a malicious data miner having

some supplementary knowledge about an individual. An individual record can uniquely or

almost uniquely be identified by some attributes such as Social Security Number, Driver

License Number, and Name. We assume that these identifying attributes are removed from

the data set before it is released. However, such exclusions may not be sufficient to protect

the privacy of an individual when a combination of other attributes can uniquely identify

the record. A malicious data miner (intruder) can have some supplementary knowledge

such as ethnic background, religion, and marital status of an individual.

Approach Taken Towards Privacy Protection

Since the class attribute value belonging to an individual is confidential, it should not

be learnt by users of the data set. Although data miners need to have unrestricted access

to the data set, we argue that they do not need an access to data that is 100% accurate (in

fact, that is never the case due to the existence of natural noise in a data set). Therefore,

we propose noise addition to a data set in order to protect individual privacy.

We add noise in two steps; in the first step, following [28, 12], we add noise to sensitive

class attribute values. This prevents a malicious user from learning the class value belonging

to an individual with 100% certainty, even if he/she can re-identify the record from a released

data set. Additionally, it may not be straightforward to re-identify a record if there exist

other records having the same or similar value in each of the attributes known to the

intruder.

However, typically a re-identification is still possible, especially for a data set having a

big number of attributes. Therefore, to prevent a re-identification with a high certainty, we

in the next step add noise to all non-class attributes, both categorical and numerical. This

provides a higher level of privacy, since an intruder is challenged in both re-identifying a

record and learning the sensitive class value even if the record is re-identified. Our goal is

to add noise in such a way so that the data quality, including patterns of a data set, are

preserved. We consider that a perturbed data set is released with an unrestricted access to

it. Moreover, the noise addition technique and all parameters for noise addition, such as

mean, standard deviation and distribution of numerical noise, are also released.

By a breach of privacy we mean disclosure of a confidential class value belonging to

an individual with 100% or very high (close to 100%) certainty. Therefore, if there is a

50

sufficient level of uncertainty in re-identification and thereby learning the class value, then

we considered that privacy is being protected. Let us illustrate the concept on an example

as follows. Suppose, Alice becomes suspicious about whether or not Bob earns more than

80K. Assume that Alice knows that the record belonging to Bob exists in a released data

set which has been modified by the above mentioned noise addition approach. The data

set has a class attribute “Income” and many non-class attributes. Suppose that she has

unrestricted access to the released data set and she attempts to learn the sensitive class

attribute value of the record belonging to Bob through record re-identification. Even if she

learns that Bob earns more than 80K, still she can not be 100% certain since she knows

that the data set has been modified. There is a chance that she has made a wrong re-

identification and/or has obtained a wrong value of the class attribute. She can not come

to any definite conclusion based on the information obtained from the released data set.

Therefore, we consider that Bob’s privacy is protected in the released data set.

We evaluate our methods by using two indicators, data quality and the level of security

in a perturbed data set. The data quality of a perturbed data set is measured in two

ways. As the first measure we use the similarity between the decision trees produced

from the original data set and the perturbed data set. We evaluate the similarity of trees

by comparing the logic rules associated with them. As the second measure we use the

prediction accuracy of a classifier obtained from a perturbed data set. We measure security

of our methods by the uncertainty that users have in estimating the confidential class value.

In this chapter we discuss noise addition to a class attribute. In Chapter 5 and Chap-

ter 6 we discuss noise addition to numerical, and categorical non-class attributes respec-

tively.

4.2 Noise Addition to Class Attribute

Notation

We recall that in a decision tree each internal node represents a test on an attribute,

each branch protruding from the node denotes an outcome of the test and each leaf node

represents a class or class distribution [47]. Figure 4.1 is an example of a decision tree. The

tree has four leaves. Leaf 1, Leaf 2 and Leaf 4 are heterogenous leaves. Records belonging

to such a leaf have different class values. However, the majority of the records belonging to

51

a heterogeneous leaf have the same class value. We call these records “majority records”

and the corresponding class value “majority class”. Similarly, the remaining records are

called “minority records” and their class values are called “minority classes”. However, all

records belonging to a homogeneous leaf have the same class value.

>7.007

av rooms per

dwelling

<= 7.007

percentage low
income

>5.39 <= 5.39

av. room per
dwelling

<= 6.485 >6.485

top 20

(13/2)

bottom 80

bottom 80

(249/8)

top 20

(33/1)

(5)

LEAF 1

LEAF 2

LEAF 3 LEAF 4

Figure 4.1: An example of a decision tree classifier.

For example, there are altogether thirty three records, belonging to the heterogeneous

Leaf 1, out of which thirty two records have the class value “top 20%”, while one record

has the value “bottom 80%”. The class values “top 20%” and “bottom 80%” are termed as

majority class and minority class of the leaf, respectively. On the other hand, all records

belonging to the homogeneous Leaf 3 have the same class value.

We use the following notation.

H - the number of heterogeneous leaves

mk - the number of majority records in the kth heterogeneous leaf, 1 ≤ k ≤ H

nk - the number of minority records in the kth heterogeneous leaf, 1 ≤ k ≤ H

52

E(N) - the expected number of changed class values

We first build a decision tree from the unperturbed data set. Following [28, 12], we

perturb the class values of the records belonging to the heterogeneous leaves of the decision

tree. The records from homogeneous leaves of the original tree remain unchanged. Finally,

the perturbed data set is released to data miners.

We argue that if a record belongs to a homogeneous leaf then the value of the class

attribute is consistent with a strong pattern identified by the decision tree, and it is very

difficult to hide it. For example, if it is a common knowledge that all citizens must retire

by the age of 60 and after that they receive a fixed amount of living assistance from the

government, then there is nothing to hide about the monthly salary/income of a person

who is over 60 years of age. In this case the pattern is very strong and it is likely to be

commonly known. Moreover, there will be no difference between the confidentiality of the

records from the training set and any other records (not in the training set) due to the very

fact that the age over 60 determines the salary.

Three Techniques

We apply three different noise addition techniques, which we call Random Perturbation

Technique (RPT), Probabilistic Perturbation Technique (PPT) and All Leaves Probabilistic

Perturbation Technique (ALPT). In each of these techniques the same amount of noise is

added, where the amount of noise is measured by the expected number of changed classes

E(N) in the perturbed data set, and

E(N) =
H∑

k=1

2mknk

mk + nk
. (4.1)

We introduce these three techniques as follows, where we consider a data set having the

class attribute of domain size two. However, these techniques can be generalized for data

sets having class attributes with bigger domain sizes.

Random Perturbation Technique

In Random Perturbation Technique (RPT), the class values of all minority records nk

belonging to the kth heterogeneous leaf are first converted from the minority class to the

majority class. Then nk records are randomly selected from the set of records belonging to

53

the leaf and their class values are changed to the minority class. This change is made in all

heterogeneous leaves.

The RPT technique always results in an even number of values being modified. For

example, if there is only one minority record then total number of changed values can be

either zero or two. If we choose the same record twice (once while changing the minority

class to the majority class and the other time while changing the majority class to the

minority class) then the number of changed values will be zero. Otherwise if we choose two

different records while changing the class values then the number of changed values will be

two.

Let, p2i
k be the probability that 2i class attribute values of the kth heterogeneous leaf

will be changed from their original values. Then,

p2i
k =

(nk
i

)(mk
i

)
(mk+nk

nk

) ;

and the expected number of changed classes in the kth heterogeneous leaf is,

E(Nk) =
nk∑

i=0

(2i)× p2i
k

= 2
nk∑

i=1

i

(nk
i

)(mk
i

)
(mk+nk

nk

)

=
2(mk+nk
nk

)
nk∑

i=1

i

(
nk

i

)(
mk

i

)
;

Since,

(
n

i

)
=

n(n− 1)!
i(i− 1)!(n− i)!

=
n

i

(
n− 1
i− 1

)
;

we have

E(Nk) =
2(mk+nk
nk

)
nk∑

i=1

i

(
nk

i

)
mk

i

(
mk − 1
i− 1

)

=
2mk(mk+nk
nk

)
nk∑

i=1

(
nk

i

)(
mk − 1
i− 1

)
;

54

Assume, lk = nk − i, then i = nk − lk and lk ∈ [0, nk − 1].

Therefore,

E(Nk) =
2mk(mk+nk
nk

)
nk−1∑

lk=0

(
nk

nk − lk

)(
mk − 1

nk − lk − 1

)
;

Since,

(
n

i

)
=

(
n

n− i

)
;

we have

E(Nk) =
2mk(mk+nk
nk

)
nk−1∑

lk=0

(
nk

lk

)(
mk − 1

nk − lk − 1

)

=
2mk(mk+nk
nk

)
(

nk + mk − 1
nk − 1

)

=
2mk

(mk+nk−1
nk−1

)

mk+nk
nk

(mk+nk−1
nk−1

)

=
2mknk

mk + nk
;

Therefore, the expected number of changed classes in the whole perturbed data set

(for all heterogeneous leaves) is,

E(N) =
H∑

k=1

2mknk

mk + nk
.

However, the probability that a class has been perturbed is not uniformly distributed

over all the records in the heterogeneous leaves. The records that have minority class in

the perturbed data set are perturbed with the probability mk
mk+nk

, while the records with

majority class in the perturbed data set are perturbed with the probability nk
mk+nk

. An

intruder’s best strategy is to assume that the records in the k-th heterogeneous leaf belong

to the majority class with probability mk
mk+nk

. In other words, an intruder has no way of

identifying records, which originally belonged to the minority class. Thus, the security

of these records is very high. On the other hand, security of records that belong to the

majority class is very low, while the security of records that belong to homogeneous leaves

is zero.

55

Probabilistic Perturbation Technique

In Probabilistic Perturbation Technique (PPT), the class values of all minority records

nk belonging to the kth heterogeneous leaf are first converted from the minority class to

majority class. Then the class of all records in the kth heterogeneous leaf are changed to

minority class with a probability pk = nk
mk+nk

. Therefore, the expected number of changed

classes in the kth heterogeneous leaf of the perturbed data set is:

E(Nk) = mkpk + nk(1− pk)

= nk + pk(mk − nk)

= nk +
nk

mk + nk
(mk − nk)

=
2mknk

mk + nk
.

The expected number of changed classes in the whole perturbed data set is,

E(N) =
H∑

k=1

2mknk

mk + nk
.

Although the expected number of changed classes is the same as in the Random tech-

nique, the security is slightly higher as the intruder does not know the exact probability

that a given record belongs to the majority class. For the leaf k, this probability is drawn

from the binomial distribution with the mean µ = 2mknk
mk+nk

. As we shall see in the next

section, our experiments indicate that the data quality of a data set perturbed by PPT is

also slightly worse than the data quality of the data set perturbed by the RPT.

All Leaves Probabilistic Technique

In All Leaves Probabilistic Technique (ALPT) we perturb all the records of the data set,

instead of just the records within heterogeneous leaves. We use this method as a simulation

of a natural noise occurring in the class attribute. We compare our other techniques to this

one in order to evaluate the effectiveness the other techniques in pattern preservation.

We change the class of all records in the data set with the probability

p =
1

NTotal

H∑

k=1

2mknk

mk + nk
;

56

where NTotal is the total number of records in the data set. The expected number of

changed classes in the whole perturbed data set is,

E(N) =
NTotal∑

i=1

p

= NTotal × 1
NTotal

H∑

k=1

2mknk

mk + nk

=
H∑

k=1

2mknk

mk + nk
.

We measure security again by the probability that a class value in the perturbed file

is not the same as the corresponding value in the original file. This probability is now

uniformly distributed over all records in the data set and is equal to p = 1
NTotal

∑H
k

2mknk
mk+nk

.

We recall that the security of records in homogeneous leaves in the previous two tech-

niques (RPT and PPT) is zero while the security of records with minority class in the

original data set is very high. Therefore, the security levels of the records are not uniformly

distributed in both RPT and PPT. Following the arguments previously given in this chapter

regarding the importance of the security for minority records over the security for records

that belong to a homogeneous leaf, we consider the nonuniform distribution more favorable

than the uniform distribution provided by ALPT. We also note that the total number of

records having a particular class remains the same in the perturbed data set when we use

the RPT. This is not the case with PPT and ALPT.

Generalization

We next show how these three techniques can be generalized for data sets having the

class attribute of domain size greater than two. We use the following notation.

H - number of heterogeneous leaves

cm
k - the majority class in the kth heterogeneous leaf

mk - number of majority records in the kth heterogeneous leaf; 1 ≤ k ≤ H

c1
k, c2

k, ... cp
k - minority classes in the kth heterogeneous leaf; 1 ≤ p ≤ (d − 1), where d is

the domain size of the class attribute

57

ni
k - number of minority records corresponding to the minority class ci

k, where 1 ≤ i ≤ p

nk - total number of minority records in the kth heterogeneous leaf, nk = Σp
i=1n

i
k

In RPT we first convert the class values of all nk minority records to the majority

class cm
k , in the kth heterogeneous leaf. We next choose any n1

k number of records randomly

from the set of records of the leaf, and convert the class value from cm
k to c1

k. Then, from

the rest of the records belonging to the leaf, we choose any n2
k number of records randomly,

and convert the class value to c2
k. We repeat the process for all minority classes of the leaf.

The change is made in all heterogeneous leaves.

In PPT the class values of all nk minority records are converted to the majority class

cm
k , in the kth heterogeneous leaf. Then the class of all records belonging to the leaf are

changed to ci
k minority class with a probability pi

k = ni
k

mk+nk
, where 1 ≤ i ≤ p.

In ALPT we change the class of all records with a probability p = 1
NTotal

∑H
k=1

2mknk
mk+nk

,

where NTotal is the total number of records. If the the original class value co of a record

is changed, then it is changed to a class value cp with a probability pp = Rp

NTotal−Ro
, where

Rp and Ro are the numbers of records with the class value cp and co, respectively, and

1 ≤ p ≤ (d− 1).

4.3 The Experiment

The purpose of this experiment is to evaluate the effectiveness of our perturbation

techniques, namely RPT and PPT in preserving the original patterns in the perturbed

data sets. We compare these techniques with the ALPT which we use as a simulation of

natural noise occurring in the class attribute. We add the same amount of noise in all of

these techniques.

We perturb a data set by all three techniques, and thereby produce three different

perturbed data sets. We build decision trees from the original data set (original tree) and

all perturbed data sets (perturbed trees). The similarities of these perturbed trees with

the original tree are evaluated and compared. The similarity of a perturbed tree with an

original tree is evaluated based on various criteria such as the classification rules, attributes

tested, and number of records belonging to each classification rule. This evaluation and

comparison help us to decide which technique preserves the original patterns the best.

58

If the number of classification errors of a tree (on the data set from which it is built)

is low, then the tree represents the patterns of the data set well. If two good representative

trees are found to be similar, then the two underlying data sets (from which the trees are

built) are also similar in terms of the patterns discovered by the trees. Therefore, if a

perturbed tree represents the perturbed data set well, and is similar to the original tree

then the perturbed data set preserves the original patterns well. We use this concept in

evaluating the data quality of a perturbed data set.

Data mining generally extracts information from data sets having a huge number of

records. Therefore, huge data sets are used to test the efficiency and correctness of a new

data mining method such as a new classification and a new clustering technique. However,

the main purpose of our noise addition technique is protecting privacy in data mining -

instead of performing a data mining task. We protect privacy by hiding sensitive infor-

mation, and preserve the patterns by disturbing the data set the least. It is not supposed

to be difficult to hide sensitive information and preserve patterns in a big and dense data

set, if we can do that in a small data set. Therefore, we do not necessarily need to use

huge data sets for our experiments. Our initial experiments in this chapter, Chapter 5 and

Chapter 6 use small data sets. However, we use bigger data sets for our main experiments

in Chapter 7.

In this section we present some experimental results on the Boston Housing Price

(BHP) data set with 300 records. The data set is widely used by the data mining community

and is available from the UCI Machine Learning Repository [77]. We use Quinlan’s famous

decision tree builder See5 (commercially available) produced by RuleQuest Research.

The BHP Data Set

The Boston Housing Price (BHP) data set has altogether 12 attributes, out of which

one is the categorical class attribute with domain {top 20%, bottom 80% }. The non-class

attributes are crime rate, proportion large lots, proportion industrial, nitric oxides ppm, av

rooms per dwelling, proportion pre-1940, distance to employment centers, accessibility to

radial highways, property tax rate per 10,000 dollars, pupil-teacher ratio and percentage

low income earners. All non-class attributes are continuous. We ignore two other non-class

attributes “CHAS” and “B” throughout our experiments. We first build a decision tree

from the 300 records of original BHP data set, which is shown in Figure 4.2.

59

percentage low
income earners

bottom 80%

(248/8)

top 20%

(10)

per dwelling

(5)

bottom 80%
pupil−teacher

ratio

nitric oxides

ppm

bottom 80%
(2)

percentage low
income earners

top 20%

(6)
bottom 80%

(3/1)

av rooms
per dwelling

av rooms

>5.49

> 7.041

<= 5.49

>6.485

<=17.8 >17.8

>0.4161

<= 4.45 > 4.45

top 20%
(26)

<= 7.041
<= 6.485

<=0.4161

LEAF 1 LEAF 2
LEAF 3

LEAF 4

LEAF 5

LEAF 6 LEAF 7

Figure 4.2: The decision tree obtained from 300 records of the original BHP data set.

Results

We perturb the data set 5 times by the RPT, and thereby produce 5 perturbed data

sets. We build a decision tree from each of these perturbed data sets. The decision trees are

shown in the figures from Figure 4.3 to Figure 4.7. We next perturb the original BHP data

set 10 times by the PPT and thereby, produce 10 perturbed data sets. We build a decision

tree from each of these perturbed data sets. A few of these decision trees are shown in the

figures from Figure 4.8 to Figure 4.10. Finally, we perturb the original BHP data set 10

times by the ALPT. We build a decision tree from each of these perturbed data sets. A few

of these decision trees are shown in the figures from Figure 4.11 to Figure 4.13.

60

bottom 80%

per dwelling
av rooms

>7.007

top 20%

LEAF 1

(33/1)

<= 7.007

percentage low
income earners

>5.39

(249/8)

<=5.39

av rooms
per dwelling

<=6.485

bottom 80%
(5)

>6.485

pupil−teacher
ratio

<=17.6

top 20%
(9)

>17.6

radial highways

bottom 80% top 20%
(2) (2)

<=5 >5

accesibility to

LEAF 5

LEAF 4

LEAF 3

LEAF 2

LEAF 6

Figure 4.3: The decision tree obtained from the 1st of the five BHP data sets that have
been perturbed by the RPT.

Result Analysis

After careful analysis we find that the data sets perturbed by RPT or PPT, generally

preserve the original patterns better than the data sets perturbed by ALPT. However,

between RPT and PPT, the first one is more consistent in preserving the patterns.

The classification rule for Leaf 1 of the original tree (Figure 4.2) is percentage low

income earners>5.49 & av rooms per dwelling<= 7.041 ⇒ bottom 80%. This classification

rule applies to 248 records, out of 300 records of the data set. If we carefully analyze

the trees obtained from data sets perturbed by RPT (shown in figures from Figure 4.3 to

Figure 4.7), we find that in all of these trees the rule is preserved with some slight changes

in the splitting points. For example, in Figure 4.3 the rule for the Leaf 2 is percentage

low income earners>5.39 & av rooms per dwelling<= 7.007 ⇒ bottom 80%. This rule also

relates to 249 records of the data set.

61

per dwelling
av rooms

LEAF 5

LEAF 4

<=6.951 >6.951

percentage low
income earners

bottom 80%

>5.39

(246/8)

av rooms

per dwelling

<=5.39

<=6.485

bottom 80%

(5) (10/1)

top 20%

>6.485

proportion large
lots

>0

top 20%

(22)

<=0

pupil−teacher
ratio

<=18.3 >18.3

bottom 80%top 20%

(12/1) (5/1)

LEAF 2 LEAF 3

LEAF 6

LEAF 1

Figure 4.4: The decision tree obtained from the 2nd of the five BHP data sets that have
been perturbed by the RPT.

The same rule is also preserved in PPT perturbed trees shown in Figure 4.9 (see the

rule for Leaf 1) and Figure 4.10 (see the rule for Leaf 4). However, the rule is not preserved

as it is in the PPT perturbed tree shown in Figure 4.8 (see the rule for Leaf 1). In 9

out of our 10 experiments this rule is preserved in the PPT perturbed trees. The rule is

also preserved in the ALPT perturbed tree shown in Figure 4.12 (see the rule for Leaf 2).

However, the tree has 20 numbers of misclassified records (errors) on the underlying data

set - while the original tree (shown in Figure 4.2) has only 9 errors on the original data set.

The same ALPT perturbed tree also has 19 errors for the classification rule (under

discussion) on the ALPT perturbed data set, compared to 8 errors made by the original

tree for the rule on the original data set. This suggests that although the rule is preserved

in the perturbed tree, the underlying data set does not match with the rule as good as the

original data set does. Therefore, just the preservation of the rule in the perturbed tree does

not indicate good data quality of the perturbed data set. Moreover, the other two ALPT

perturbed trees shown in Figure 4.11 and Figure 4.13 do not even preserve the rule, in its

original form. In 5 out of total 10 experiments, the perturbed trees do not preserve the

rule. The trees that preserve the rule have errors between 20 to 27 on their corresponding

62

per dwelling
av rooms

LEAF 5

LEAF 4

<=6.951 >6.951

percentage low
income earners

bottom 80%

>5.39

(246/8)

av rooms

per dwelling

<=5.39

<=6.485

bottom 80%

(5) (10/1)

top 20%

>6.485

proportion large
lots

>0

top 20%

(22)

<=0

pupil−teacher
ratio

<=18.3 >18.3

bottom 80%top 20%

(12/1) (5/1)

LEAF 2 LEAF 3

LEAF 6

LEAF 1

Figure 4.5: The decision tree obtained from the 3rd of the five BHP data sets that have
been perturbed by the RPT.

underlying data sets.

Similarly, there are other classification rules such as the rule for the Leaf 3 and the rule

for the Leaf 4 of the original tree (Figure 4.2), that are preserved in all or most of the RPT

perturbed trees. Some of these rules are also preserved in many PPT perturbed trees.

The number of misclassified records for the original tree on the original data set is 9,

whereas the number of misclassified records for the RPT perturbed trees on their corre-

sponding underlying data sets varies from 9 to 11. Similarly, number of misclassified records

for PPT varies from 6 to 13, whereas for ALPT it varies from 17 to 27.

Trees built from the RPT perturbed data sets are very similar to the tree produced

from the original data set. Out of four attributes tested in the original tree, three appear in

all RPT perturbed trees. The splitting points used for these three attributes, in all trees,

are very similar to the corresponding splitting points used in the original tree. For example,

the splitting point of percentage low income earners in the original tree is 5.49 - whereas it

ranges from 5.39 to 5.49 in all RPT perturbed trees. The attribute from the original tree,

which is missing in the perturbed trees, is only tested towards the bottom of the original

tree and caters for only 11 records out of 300. Ignoring logic rules including that attribute,

63

four other rules from the original tree appear in the same or very similar form in all trees.

The analysis of the ten PPT perturbed trees shows results similar to the results ob-

tained from the analysis of RPT perturbed trees. Out of 4 attributes from the original tree

2 appear in all perturbed trees, while the third one appears in 8 out of 10 trees. The logic

rules from the original tree (with the exception of the rule involving nitric oxides ppm)

appear in the same or very similar form in most trees. However, 4 trees contain new rules

and have significant number of cases belonging to those new rules.

Trees obtained from the 10 ALPT perturbed data sets are found significantly different

from the original tree. Still, all of them contain the two most significant attributes from

the original tree and 7 out of 10 trees contain the third attribute. Some of these trees are

much deeper than the original tree and contain quite a few new rules. On the other hand

some of the trees are very shallow and test only two attributes.

4.4 Conclusion

In this chapter, following [28], we have carefully added a little amount of noise to the

confidential class attribute values of a data set for preserving individual privacy. We have

added noise to the class values using two of our noise addition techniques namely RPT and

PPT. We have compared the data sets perturbed by these two techniques with the data sets

perturbed by another technique called ALPT through studying the similarities between the

decision trees obtained from these perturbed data sets and the original data set. Although

we have added the same amount of noise in all three techniques - our experimental results

show that the first two techniques preserve the patterns far better than the third technique,

which we have used as a simulation of natural noise occurring in the class values. Between

the two techniques, PPT provides better security, while RPT preserves the patterns better.

In the next chapter we present novel techniques for adding noise to all non-class numerical

attributes.

64

per dwelling
av rooms

>7.007

percentage low

bottom 80%

>5.39

(249/8)

av rooms

per dwelling

<=5.39

<=6.485

bottom 80%

(5)

>6.485

LEAF 2

LEAF 1

(33/1)

top 20%

<=7.007

income earners

pupil−teacher
ratio

top 20%

(9)

<=17.6

accesibility to
radial highways

>17.6

bottom 80% top 20%
(2) (2)

<=5 >5

LEAF 3

LEAF 4 LEAF 5

LEAF 6

Figure 4.6: The decision tree obtained from the 4th of the five BHP data sets that have
been perturbed by the RPT.

65

per dwelling
av rooms

>7.007

percentage low

bottom 80%

>5.39

(249/8)

av rooms

per dwelling

<=5.39

<=6.485

bottom 80%

(5)

>6.485

LEAF 2

LEAF 1

(33/1)

top 20%

<=7.007

income earners

pupil−teacher
ratio

top 20%

(9)

<=17.6

accesibility to
radial highways

>17.6

bottom 80% top 20%
(2) (2)

<=5 >5

LEAF 3

LEAF 4 LEAF 5

LEAF 6

Figure 4.7: The decision tree obtained from the 5th of the five BHP data sets that have
been perturbed by the RPT.

66

per dwelling
av rooms

<=6.75

bottom 80%
(243/10)

>6.75

av rooms
per dwelling

top 20%

(33/1)

percentage low
income earners

<=7.007>7.007

top 20%

(10/1)

bottom 80%
(14/1)

<=5.19 >5.19

LEAF 1

LEAF 2

LEAF 3 LEAF 4

Figure 4.8: The decision tree obtained from one of the ten BHP data sets that have been
perturbed by the PPT.

67

percentage low
income earners

>5.49

av rooms
per dwelling

bottom 80%
(248/5)

LEAF 1 LEAF 2

(10)

<=7.041 >7.041

av rooms
per dwelling

<=5.49

LEAF 3

bottom 80%

<=6.485

(5)

>6.485

pupil−teacher
ratio

top 20%

>18

(28)

<=18

accesibility to
radial highways

bottom 80%

(4/1)

top 20%

top 20%

(5)

LEAF 6

<=5 >5

LEAF 4

LEAF 5

Figure 4.9: The decision tree obtained from another BHP data set that has been perturbed
by the PPT.

68

per dwelling
av rooms

<=6.951

proportion large

top 20%

(22)

LEAF 1

>0

>6.951

lots

<=0

pupil−teacher
ratio

LEAF 2

<=18.3

(12/1)

top 20% bottom 80%
(5/1)

LEAF 3

>18.3

percentage low
income earners

bottom 80%

LEAF 4

>5.39

av rooms
per dwelling

<=5.39

(246/8)

bottom 80%

LEAF 5

(5)

>6.485<=6.485

pupil−teacher
ratio

top 20%
(7)

LEAF 6

bottom 80%
(3/1)

LEAF 7

<=17.6 >17.6

Figure 4.10: The decision tree obtained from a 3rd BHP data set that has been perturbed
by the PPT.

per dwelling
av rooms

top 20%
(33/1)

LEAF 1

>7.007
percentage low
income earners

<=7.007

pre−1940
proportion

>27.9

LEAF 2

<=27.9

proportion
industrial

<=2.95 >2.95

top 20%

(3)

LEAF 3

av rooms
per dwelling

bottom 80%
(3)

LEAF 4

>6.794

top 20%
(3/1)

LEAF 5

<=6.794

proportion
industrial

av rooms
per dwelling

<=6.015

bottom 80%
(3)

>6.015

crime rate

<=0.05789

bottom 80%
(17/2)

top 20%
(8/2)

LEAF 8LEAF 7

>4.86

pupil−teacher
ratio

<=4.86

LEAF 6

(188/10)
bottom 80%

LEAF 9

av rooms
per dwelling

LEAF 10

>0.05789

bottom 80%
(26/1)

top 20%
(3)

LEAF 11

>16.4 <=16.4

<=6.538 >6.538

>5.03<=5.03

top 20%

(6)

Figure 4.11: The decision tree obtained from one of the ten BHP data sets that have been
perturbed by the ALPT.

69

per dwelling
av rooms

<=5.39>5.39

>6.485

LEAF 1

LEAF 2

LEAF 3

>7.007 <=7.007

top 20%
(33/1)

income earners
percentage low

(249/19)

av rooms
per dwelling

<=6.485

bottom 80%

(5)

pupil−teacher
ratio

bottom 80%

LEAF 4

top 20%
(9)

<=17.6 >17.6

radial highways
accesibility to

bottom 80%
(2)

top 20%

(2)

LEAF 5 LEAF 6

<=5 >5

Figure 4.12: The decision tree obtained from another BHP data set that has been perturbed
by the ALPT.

70

per dwelling
av rooms

top 20%
(33/1)

LEAF 1

>7.007
percentage low
income earners

<=7.007

LEAF 2 top 20%

(8)

LEAF 3

bottom 80%
(2)

LEAF 4

>5

top 20%
(2)

LEAF 5

<=5.03

av rooms
per dwelling

<=6.495 >6.495

bottom 80%
(3)

ratio
pupil−teacher

>17.6<=17.6

accesibility to
radial highways

<=5

>5.03

proportion

large lots

bottom 80%
(26)

LEAF 6

>22 <=22

industrial
proportion

>5.19

bottom 80%
(199/19)

<=5.19

av rooms
per dwelling

<=5.998

(9)
bottom 80%

>5.998

accesibility to
radial highways

bottom 80%
(4)

<=2 >2

av rooms
per dwelling

top 20%
(5)

>6.315 <=6.315

crime rate

top 20%
(2)

bottom 80%

<=0.03502 >0.03502

(7/1)

LEAF 7

LEAF 8

LEAF 9

LEAF 10

LEAF 11 LEAF 12

Figure 4.13: The decision tree obtained from a 3rd BHP data set that has been perturbed
by the ALPT.

71

Chapter 5

Non-class Numerical Attributes

Perturbation Technique

5.1 Introduction

We continue with our objectives of protecting the confidentiality of the class value

belonging to an individual, while maintaining a good data quality in the released data set.

In the previous chapter, following the technique proposed by Estivill-Castro and Brankovic

[28], we have presented a couple of new noise addition techniques for perturbing sensitive

class attribute values. In this chapter we present a couple of techniques for adding noise to

non-class numerical attributes. The technique proposed by Estivill-Castro and Brankovic

[28] adds noise to categorical class attribute only.

Noise addition to the class attribute reduces the disclosure risk of the confidential class

value belonging to an individual. Additionally, noise addition to the non-class attributes

along with the class attribute results in even better privacy. Moreover, some non-class

numerical attributes can also be considered confidential in the sense that disclosure of

such attribute values belonging to an individual can expose personal information to an

unacceptable level. For example, numerical non-class attributes such as “Salary”, “Credit

Card Limit”, “Home Equity” and “Liabilities” can be considered confidential. Some other

numerical attributes such as “Height” and “Country of Origin” can be considered non

confidential, but again the degree of confidentiality of an attribute is context dependant.

Some noise addition techniques such as the one proposed by Muralidhar et al. [73] add noise

72

only to confidential attributes. However, we suggest noise addition to all of the attributes

regardless of whether or not they are considered confidential. In this chapter we present a

noise addition technique for all non-class numerical attributes of a data set having several

numerical attributes and a single categorical class attribute. An example of such a data set

is the Wisconsin Breast Cancer (WBC) data set available from the UCI Machine Learning

Repository [77]. We first give a brief introduction to the WBC data set, as we shall refer

to it in examples throughout this chapter.

The WBC data set has 10 numerical non-class attributes and one categorical class

attribute. The class attribute has two categorical values, “2” and “4”. Out of 10 numerical

attributes one is the Record ID, which uniquely identifies a record. Therefore, this attribute

is excluded from the data set at the beginning. The remaining 9 numerical non-class at-

tributes are Clump Thickness, Uniformity of Cell Size, Uniformity of Cell Shape, Marginal

Adhesion, Single Epithelial Cell Size, Bare Nuclei, Bland Chromatin, Normal Nucleoli and

Mitoses. The domain of each of these attributes is [1,10], where the domain of an attribute

is a set of legal values that the attribute can take [19]. We build a decision tree, from 349

records of the WBC data set, using the commercially available of the See5 decision tree

builder of RuleQuest Reseasrch. The decision tree is shown in the Figure 5.1.

In order to add noise to non-class numerical attributes we split the non-class attributes

of each record into two divisions, namely Leaf Innocent Attributes (LINNAs) and Leaf

Influential Attributes (LINFAs). In a decision tree, if an attribute is not tested in any

of the nodes on the path between the root and a leaf, then the attribute is called a Leaf

Innocent Attribute (LINNA) for the records belonging to that leaf. Thus, records belonging

to every leaf of a decision tree maintain a set of LINNAs. For example, Uniformity of Cell

Shape, Marginal Adhesion, Single Epithelial Cell Size, Bare Nuclei, Bland Chromatin and

Mitoses are the LINNAs for the records belonging to Leaf 1 of the decision tree shown in

Figure 5.1. LINNAs are not influential in the sense that they do not play any role in the

prediction of the class attribute for the records belonging to the leaf. In other words, they

do not appear in the logic rule related to the leaf.

On the contrary, the attribute that is tested at least once on the path between the root

and a leaf is called a Leaf Influential Attribute (LINFA) for the records belonging to that

particular leaf. For each leaf of a decision tree there is a set of LINFAs. For example, Clump

Thickness, Uniformity of Cell Size and Normal Nucleoli are the LINFAs for the records

belonging to the Leaf 1. Conceptually the selection of LINFAs and LINNAs is similar

73

Uniformity of
Cell Size

Clump
Thickness

Normal
Nucleoli

(6/1)
2

(6)

4

Uniformity of
Cell Size

(158/1)
2 Bare

Nuclei

2

(12)

4

(2)

<=2

>5

<=2 >2 <=1 >1

<=4 >4

<=5

Uniformity of
Cell Shape

4
(118/5)

Uniformity of
Cell Size

4
(14)

>4 <=4

Adhesion
Marginal

>5

(9)
Clump

Thickness

(4)
4

>9

Uniformity of
Cell Shape

2
(4)

>2

4

Adhesion
Marginal

(6/1)
4

<=4

(2)

2

>4

<=2

Chromatin
Bland

<=5

2
(3)

>5

>4

>2

<=9

<=5

<=4

LEAF 2 LEAF 3

LEAF 4 LEAF 5

LEAF 6

LEAF 7

LEAF 8

LEAF 9

LEAF 10

LEAF 11

LEAF 12 LEAF 13

LEAF 1

Figure 5.1: The decision tree obtained from 349 records of the original (unperturbed) WBC
data set.

to feature selection in the sense that a feature selection algorithm would also extract the

LINFAs since they are the truly informative attributes. However, instead of having a set

of LINFAs for whole data set we have separate sets of LINFAs for leaves.

We add noise to the LINNAs of the records through a novel noise addition technique

called Leaf Innocent Attribute Perturbation Technique (LINNAPT). We also add noise to

the LINFAs of the records by another novel noise addition technique called Leaf Influential

Attribute Perturbation Technique (LINFAPT). LINNAPT adds noise only to the LINNAs,

whereas LINFAPT adds noise only to the LINFAs. These techniques are described in the

following sections.

Therefore, in order to add noise to both LINNAs and LINFAs we first build a decision

tree from an unperturbed data set. The set of LINNAs and the set of LINFAs are deter-

74

mined for the records belonging to a leaf. The LINNAs are first perturbed by LINNAPT

and then the LINFAs are perturbed by LINFAPT. Eventually the records belonging to

all leaves are perturbed by these two techniques. The effectiveness of these techniques in

maintaining the data quality is evaluated through comparing it with another noise addition

technique called Random Noise Addition Technique (RNAT), which is not catered for pre-

serving the patterns unlike the other techniques. We describe the LINNAPT, the LINFAPT

and RNAT in the following sections.

5.2 The Leaf Innocent Attribute Perturbation Technique

Let A be a set of all LINNAs. The LINNAPT adds noise to A and produces the set of

perturbed attributes A∗ = A+ξ, where ξ is discrete noise with a mean µ and a variance σ2.

The distribution of the noise can be chosen to suit a particular application. The domains

of A∗ remain the same as the domain of A. For example, the domain of a perturbed

attribute A∗ ∈ A∗ remains the same as the domain of the corresponding unperturbed

attribute A ∈ A. We take a wrap around approach to preserve the domain of an attribute.

LINNAPT adds noise to all LINNAs of each and every record of the data set. We present

a pseudocode as follows.

For each record, DO:

STEP 1: Determine the leaf L that the record belongs to.

STEP 2: From the original decision tree compute the list of LINNAs for L.

STEP 3: Compute domains of the LINNAs.

STEP 4: For each LINNA, A ∈ A, add noise to produce a perturbed attribute

A∗ = A+ ξ, where ξ is drawn from a normal distribution having mean µ and a variance σ2.

STEP 5: If a value of A∗ falls outside the domain of A wrap around the value so that

it remains within the domain of A.

END DO

We again evaluate the data quality of a data set perturbed by LINNAPT through

the similarity of the decision trees obtained from the perturbed data set and the original

data set. In Chapter 7 we present some experimental results to evaluate the data quality

of a LINNAPT perturbed data set. We discuss the techniques and their overall security

in Chapter 8 in detail. We also present some preliminary security analyses of a data set

perturbed only by LINNAPT as follows.

75

To evaluate the security of our method, we consider the following scenario. Assume

that an intruder is interested in learning the confidential class of a record X in a data set.

We assume that the intruder has some supplementary knowledge about the record X, that

is, he/she knows the values belonging to few attributes of the record X, as otherwise he/she

would not be able to identify the record and learn the class.

We shall first assume that an intruder can uniquely re-identify the record X with the

supplementary knowledge of the values of LINNAs. After the noise has been added to the

LINNAs the intruder is not able to uniquely re-identify the record any more. They can,

however, estimate the probability p(X → Y) that a record X in the original data set is

changed to the record Y in the perturbed data set, assuming of course that the probability

distribution of the added noise is known to them. We can express p(X → Y) as follows:

p(X → Y) =
k∏

i=1

p(A∗i −Ai),

where p(A∗i − Ai) is the probability that the noise added to the attribute Ai is equal to

(A∗i −Ai), and k is the number of LINNAs required to re-identify the record X. If the data

set is dense, that is, if there are many records with similar values in LINNAs then there

will be many records Yi in the perturb file with a similar probability p(X → Yi). In general,

these records will belong to different leaves with different leaf classes and intruder will have

a great deal of uncertainty about the class of X. For a record X of the original data set,

if the distribution of p(X → Y) over all perturbed records is uniform then the security is

high. In fact, the more uniform the distribution, the higher the security.

We shall next assume that an intruder can uniquely identify the record X with the

supplementary knowledge about the values of LINFAs. The intruder will still be able to re-

identify the record X, since no noise has been added to the LINFAs, and thus the intruder

can learn the class value of X. We, however, argue that in this case the records from

the released data set are not under greater privacy threat than any other record of that

kind which is not in the released data set. Indeed, the intruder can obtain a pretty good

estimate of the class value of any record, for which he knows the values of LINFAs, through

the classifier built from the released data set. However, one can argue that classifiers are

typically more accurate when applied to the records from a training set (released data

set, in our scenario) than when applied to other records that are not in the training set.

76

Therefore, we add noise to the LINFAs on top of the noise addition to the LINNAs and

the class attribute.

5.3 The Leaf Influential Attribute Perturbation Technique

Let B be a set of all LINFAs. The LINFAPT adds noise to B and produces the set

of perturbed attributes B∗ = B + ξ, where ξ is random noise generated from a normal

distribution with a mean µ and a variance σ2. The distribution of the noise can be chosen

to suit a particular application. The domains of B∗ remain the same as the domains of B.

For example, the domain of a perturbed attribute B∗ ∈ B∗ remains the same as the domain

of the corresponding unperturbed attribute B ∈ B. We take a wrap around approach to

preserve the domain of an attribute. LINFAPT adds noise to all LINFAs of each and every

record of a data set. We present a pseudocode as follows.

For each record, DO:

STEP 1: Determine the leaf L that the record belongs to.

STEP 2: From the original decision tree compute the list of LINFAs (say, B) for L.

STEP 3: From the original decision tree compute the domains of the LINFAs. Domain

of a LINFA (say, B ∈ B) is the range defined by the conditional values of the LINFA for L.

STEP 4: For each LINFA, B ∈ B, add noise to produce a perturbed attribute

B∗ = B + ξ, where ξ is drawn from a normal distribution having mean µ and a variance σ2.

STEP 5: If a value of B∗ falls outside the domain of B wrap around the value so it

remains within the domain of B.

END DO

An important characteristic of LINFAPT is that the perturbed values of all LINFAs

remain within the ranges defined by the conditional values of the LINFAs in a decision tree.

LINFAPT uses a wrap around approach when a perturbed value B falls outside the range.

If B is greater than the upper limit u of the range r = [l, u] then a final perturbed value is

calculated as Bf = l + B − u− 1. A similar approach is taken if B is less than l.

As an example, consider Leaf 1 of Figure 5.1 that has three LINFAs namely Uniformity

of Cell Size, Clump Thickness and Normal Nucleoli. The range of Uniformity of Cell Size,

defined by the conditional value of the LINFA for Leaf 1 is 1 to 2 inclusive. Thus, LINFAPT

adds noise to this attribute for the records belonging to Leaf 1 in such a way so that the

perturbed value of the attribute remains within the range 1 to 2. Similarly, the range of

77

Clump Thickness for the records belonging to Leaf 1 is 6 to 10 inclusive, while the range of

Normal Nucleoli for the records belonging to the same leaf is 1 to 2 inclusive. The range of

Uniformity of Cell Size for the records belonging to Leaf 7 is 5 to 10 inclusive.

We continue with our usual approach of measuring the data quality of a perturbed data

set through the similarity analysis of the decision trees obtained from the original and the

perturbed data sets. Experimental results are presented in Chapter 7 to evaluate the data

quality of a perturbed data set. The security provided by LINFAPT can be evaluated in a

way similar to the evaluation of the security provided by LINNAPT. Moreover, an overall

security analyses of a released data set is discussed in Chapter 8.

5.4 The Random Noise Addition Technique

We now present another noise addition technique called Random Noise Addition Tech-

nique (RNAT), which unlike LINNAPT and LINFAPT does not cater for preserving the

patterns. This method is used in our experiments only to evaluate the effectiveness of

LINNAPT and LINFAPT.

RNAT adds noise having zero mean and a uniform distribution. For example, if the

domain size of an attribute is |D|, RNAT generates a pseudorandom number n from an

uniform distribution having a range between −(D− 1) and +(D− 1). The random number

n is then added with an attribute value x to produce the perturbed value p = x + n. The

domain of an attribute (LINNA or LINFA) is maintained through a wrap around approach

when a perturbed value falls outside the domain.

The wrap around approach is explained as follows. If a perturbed value p is greater

than the upper limit of the domain [a, (a + D)] the wrap around approach first measures

the difference d = p− (a+D). It then produces the final perturbed value pf = a+ d− 1. A

similar approach is taken if p is less than a. RNAT adds noise to all values of an attribute,

both to LINNAs and LINFAs without maintaining the range defined by the conditional

values of a LINFA.

5.5 Conclusion

In this chapter we have presented a two novel noise addition techniques for non-class nu-

merical attributes. We have carried out some small experiments on the techniques presented

78

in this chapter. Our experimental results are very encouraging. They clearly indicate the

effectiveness of the techniques (LINNAPT and LINFAPT) in preserving a high data quality

in a perturbed data set. However, since we run comprehensive experiments in Chapter 7

on these techniques along with other techniques such as the class attribute perturbation

technique, we present experimental results only in Chapter 7. Before we present our main

experimental results in Chapter 7 we introduce another technique for noise addition to

non-class categorical attributes in Chapter 6.

79

Chapter 6

Non-class Categorical Attributes

Perturbation Technique

6.1 Introduction

So far we have considered data sets having a categorial class attribute and a number of

numerical non-class attributes. Therefore, in the previous chapters we have proposed noise

addition techniques for such data sets. However, there are many data sets having both

numerical and categorical non-class attributes, or only categorical non-class attributes. Ex-

amples of such data sets include Large Soybean Database, Banding Database and Annealing

Data, which are available from the UCI Machine Learning Repository [77]. We recall that

these data sets are required to be released for various purposes such as research, marketing,

health care and finance. Ideally, the whole data set should be released without any access

restriction so that users can apply various data mining techniques. A disclosure of general

patterns and properties of a data set is not a breach of privacy, they are to be extracted

from the data set. However, a disclosure of confidential individual values with sufficient

certainty is considered a breach of privacy. For the protection of individual privacy in such

data sets we propose to perturb all categorical non-class attributes, along with all numerical

non-class attributes and the categorical class attribute. However, due to the absence of any

natural ordering in categorical values, it is not clear how to add a small amount of noise to

them.

The organization of the chapter is as follows. In the next section we present a few ex-

80

isting noise addition techniques (for categorical attributes) including the so-called PRAM.

In section 6.3 we discuss a few existing categorical attribute clustering techniques including

CACTUS, ROCK and CORE and we comment on their strengths and limitations. We also

discuss the essence of another group of clustering techniques such as AMOEBA, AUTO-

CLUST and AUTOCLUST+. In Section 6.4 we present DETECTIVE, a novel clustering

technique which we use for adding noise to the data set while preserving the patterns. We

introduce EX-DETECTIVE, a categorical attribute perturbation technique in Section 6.5.

Experimental results are presented in Section 6.6. Section 6.8 gives concluding remarks.

6.2 Background

Noise addition for preserving confidentiality of a categorical attribute was first in-

troduced by Warner in 1965 [111] as a technique for protecting individual privacy of the

participants in a survey, through noise addition to their responses. We describe this method

using the same notation as Bentley [10]. A survey participant is asked two questions, Q

and its complement Qc, where each of them is a yes/no question. Examples of Q and Qc

can be “Are you a smoker?” and “Are you a non-smoker?” respectively. The participant

provides an answer to either Q or Qc. The participant is equipped with a biased coin

which has probability p for heads and probability (1 − p) for tails. The probability p is

known to the interviewer. The participant tosses the coin (unobserved by the interviewer)

and if he/she gets heads he/she answers question Q, otherwise answers question Qc. As

the interviewer does not know which question is answered, the participant is more likely

to provide the correct information. It is shown that from such randomized responses of a

number of participants a reasonably accurate proportion belonging to yes (or no) of Q can

be estimated - provided participants give correct answers.

In 1977 Kooiman et al. introduced another technique for adding noise to categorical

values, the so called Post Randomization Method (PRAM) [61]. PRAM changes the values

of a categorical attribute in all records according to a predefined probability distribution.

Like many other noise addition techniques PRAM can also result in a learning bias due to

the changes of values. We will use the notation of de Wolf et al. [21, 43] in order to describe

PRAM. Let ξ denote an attribute in an original data set, let Dξ denote the domain of ξ

and let K = |Dξ| be the the number of values in Dξ. Applying PRAM on ξ produces the

perturbed attribute X, where the domain of X is the same as the domain of ξ, that is, Dξ

81

= DX = D. If the probability that an original value k is changed into a perturbed value

l is pkl = p(X = l | ξ = k), then
∑

l∈D pkl = 1 for all k ∈ D. The probability pkl is called

the “transition probability”. The basic concept of PRAM can be expressed by a K × K

Markov matrix, where the elements are the transition probabilities, as follows.


p11 p12 . . . p1K

p21 p22 . . . p2K

...
...

. . .
...

pK1 pK2 . . . pKK




It is very important to carefully choose the transition probabilities so as to control

the amount of noise added to data. In [40] the authors suggest that clustering categorical

attribute values can be used to assist in finding an appropriate set of transition probabilities.

For example, for some 1 > a > b > 0, pkl = a if k and l belong to the same cluster and

pkl = b if they belong to different clusters.

Giggins and Brankovic [40] proposed a technique to introduce an ordering among the

values belonging to a categorical attribute and thereby facilitating noise addition to the

values. The main idea is to break down the categorical attribute into sub-attributes that

have natural orderings. For example, an attribute City with domain {Sydney, Melbourne,

Brisbane, Newcastle} can be broken down into the following numerical sub-attributes: Pop-

ulation, Geographical Longitude and Latitude, and Pollution Index [11]. Natural orderings

of the numerical sub-attributes are then used to assign some ordering among the categori-

cal values. The idea was originally proposed by Brankovic [11] for allowing “range” queries

involving categorical attributes.

Both above techniques use the same transition probability for a pair of values belonging

to an attribute over all records of a data set. Therefore, clustering is performed only once,

involving all records of the data set. However, we observe that two values may not be

similar (i.e. may not belong to the same cluster) over the whole data set, but can still be

similar within a horizontal segment (set of records) of the data set. For example, Nurse and

Secretary, as two categorical values of an attribute Profession, can be considered similar

among people older than 60 years - since both of these jobs were typically performed by

females and neither of them required tertiary degrees in the past. However, as these jobs

are nowadays performed by males and females alike and nursing now requires a Bachelor

degree, they may not be similar for the younger part of the population.

In the next section we discuss a few existing categorical attribute clustering techniques

82

including CACTUS, ROCK and CORE and we comment on their strengths and limitations.

6.3 An Overview of Existing Categorical Attribute Cluster-

ing Techniques

In this section we discuss a few existing clustering techniques for records with cate-

gorical values. We also discuss some limitations of these techniques in the context of noise

addition.

We first explain CACTUS proposed by Ganti, Gehrke and Ramakrishnan [38]. Let us

consider a data set D with three attributes A, B and C having domains a = {a1, a2, a3},
b = {b1, b2, b3, b4} and c = {c1, c2}, respectively - as shown in Figure 6.1. Note that

Figure 6.1 shows the domains of the attributes rather than the data set. CACTUS first

calculates ED(a1, b1), which is the “expected number” of records having the co-appearance

of two values a1 and b1 belonging to two different attributes of the data set D. ED(a1, b1)

is calculated for the case when the attributes are independent, and all their values are

equally likely (the so called Attribute Independence Assumption). Note that CACTUS

does not require the data set to comply with the Attribute Independence Assumption. On

the contrary, in such a data set CACTUS would not find any cluster of size greater than

one. Therefore, ED(a1, b1) = |D|
|a|×|b| , where |D| is the number of records of the data set. In

our example in Figure 6.1, for a data set having 360 records, ED(a1, b1) = 30.

If two values ai ∈ a and bi ∈ b appear together δ times more than ED(ai, bj), where δ

is a user defined constant - then the values are considered to be strongly connected. For a

δ=1.2, two values ai and bj are strongly connected if they co-appear in at least (1.2 × 30)

= 36 records. Let us assume that a1 and b1 co-appear in 100 records, a2 and b1 co-appear

in 31 records, and a3 and b1 co-appear in 39 records in the data set D. Therefore, a1 and

b1, and a3 and b1 are strongly connected while a2 and b1 are not, as shown in Figure 6.1 by

thick and thin solid lines. CACTUS regards two values from the same attribute as similar

with respect to another attribute, if both values are strongly connected with a common

value of the other attribute. For example, a1 and a3 are similar with respect to b1 since

both of them are strongly connected with b1. In Figure 6.1 a similarity between two values

has been shown by a dotted line.

CACTUS consists of three phases: summarization, clustering and validation. In sum-

83

A B C

a
1

a
2

a

b1

b

c
1

cb2 2

3 3

Figure 6.1: The basic concept of similarity, of two values belonging to a categorical attribute,
in CACTUS.

marization phase it first builds inter-attribute summaries comprising all pairs of attribute

values which are strongly connected. It then builds intra-attribute summaries which contain

all similar pairs of values belonging to each attribute. In the clustering phase CACTUS

first produces all cluster projections on each attribute. Then, it creates candidate clusters

on all the attributes from these individual cluster projections. It initially produces a can-

didate cluster on a pair of attributes, then extends the pair to a set of three attributes,

and so on. Finally, in the validation phase CACTUS computes the set of actual clusters

from the set of candidate clusters. If the support of a candidate cluster is greater than a

given threshold then that candidate cluster is considered to be an actual cluster. Support

of a candidate cluster is measured by the number of records that belong to the candidate

cluster. CACTUS clusters Cartesian product of attribute domains. It actually considers a

cluster to be a collection of records such that every pair of values (belonging to two differ-

ent attributes) within a cluster is strongly connected. According to CACTUS, an attribute

value may belong to a number of clusters. Additionally, a record can also belong to more

than one cluster.

We also observe a few characteristics of CACTUS which make it unsuitable for usage

in noise addition. CACTUS considers the whole data set in order to measure if two values

are strongly connected. However, we note that two values may not be strongly connected

within the whole data set, but they can still be strongly connected in a particular horizon-

84

tal segment of the data set. CACTUS overlooks such strong connections within various

segments of a data set. Furthermore, the definition of a cluster used in CACTUS is overly

restrictive and hence CACTUS may end up with huge number of clusters [16]. We also

observe that the presence of an attribute which is not correlated with other attributes may

drastically increase the number of clusters, in the case where the values in the all or at least

two of the attributes are approximately equally likely.

Chuang and Chen [16] proposed a correlation based agglomerative hierarchical cluster-

ing algorithm called CORE. It is a bottom up strategy which initially considers each record

as a cluster and then gradually merges these atomic clusters into larger clusters, until a

termination condition is satisfied. Chuang and Chen noticed that the correlation between

attribute values can be explored to build clusters of records. CORE considers a record as

a set of attribute values that comprise the record. In Figure 6.2 we illustrate the basic

concepts used in CORE. The figure shows an example of a data set having four records

and three attributes. The dotted lines represent the records and the nodes represent the

attribute values of the records.

A B C

a
1

a
2

a

a

b1

b1

b1

c
1

c

c
1

c1

b2 2

R1

3

R2

R

R4

1

2

Figure 6.2: An illustration of the correlation analysis by CORE.

CORE computes correlations for every pair of attribute values (belonging to different

attributes) as a ratio of the number of records having both of the values, to the number of

distinct records having any of the values. For instance, in Figure 6.2 the correlation between

two attribute values a1 and b1, Corr(a1, b1) is 2
3 , since they co-occur in two records (R1

and R3) and there are three records (R1, R3 and R4) that contain at least one of these two

values. For each pair of values a1 and b1, CORE computes the so called Force Correlation

85

FC(a1, b1) = Corr(a1, b1)−δ, where δ is a user defined constant. If the Force Correlation is

positive then the corresponding attribute values are considered to be attractive, otherwise

repulsive.

CORE first considers each record as a cluster. It then computes similarity for each

pair of clusters based on the Force Correlations for all pairs of values, such that one value of

a pair belongs to one cluster and the other value belongs to the other cluster. Two clusters

with the largest similarity are merged together. CORE then goes into the next hierarchical

merging iteration. This process continues until a termination condition is satisfied. Note

that each record can only belong to one cluster. However, any value of an attribute may

appear in several clusters.

We observe a feature of CORE which makes it unsuitable for noise addition. Recall that

CORE calculates correlation between two values as a ratio of the number of records with

both of the values, to the number of records with either of the values. Consider a scenario

where one value appears in a very large number of records and the other appears in a small

number of records, and when the second value always appears with the first value. In that

case the second value implies the first value. CORE overlooks such a strong relationship.

This is further illustrated in Figure 6.3. According to the figure, the Corr(a1, b1) is 1
3 ,

which is less than their correlation in the previous example shown in Figure 6.2. Since

they are having a relatively lower correlation it is possible that they can be considered as

repulsive depending on the value of δ. However, considering the fact that a1 always appears

with b1, a1 is actually attractive/correlated to b1. The appearance of a1 almost certainly

indicates the appearance of b1. Therefore, we argue that CORE does not capture this kind

of relationship.

Guha, Rastogi and Shim [45] proposed an agglomerative hierarchical clustering algo-

rithm called ROCK in the context of Market Basket data set. ROCK measures similarity

of two records by the ratio of the number of attribute values appearing in both records

to the number of distinct attribute values appearing in any of the records. Informally, let

s1 be the number of attributes in which R1 and R2 (where R1 and R2 are two records)

have the same value, and let s be the total number of attributes. Then the similarity,

sim(R1 ,R2), of R1 and R2 can be expressed as s1
2s−s1

. For example, in Figure 6.3 the

sim(R1 ,R2) = 0
6 and the sim(R1 ,R3) = 3

3 . ROCK considers two records as neighbors if

their similarity exceeds a given threshold θ. It assigns links between every two neighbor

records Ra and Rb, where the number of links link(Ra, Rb) between them is the same as

86

A B C

a
1

a
2

a

a

b1

b1

b1

c
1

c

c
1

c

b2 2

R1

3

R2

R

R4

1

2

R5

R6

R7

R8

R9

a

a

a

a

3

2

3

2

a
2

b1

b3

b1

b2

b1
c

c

c

c

c

1

2

2

1

3

1

Figure 6.3: An example showing a limitation of CORE.

the number of their common neighbors. ROCK aims to maximize the sum of links for

records belonging to the same cluster, and to minimize the sum of links for records belong-

ing to different clusters. Therefore, the criterion function that ROCK wants to maximize is

El =
∑k

i=1 ni ∗
∑

Ra ,Rb∈Ci

link(Ra ,Rb)

n
1+2f (θ)
i

, where Ci denotes cluster i of size ni , where 1 ≤ i ≤ k.

In the criterion function the total number of links between pairs of records in a cluster

is divided by the expected number of these links. This division forces the records having

few links between them to be assigned to different clusters. Otherwise all records of a data

set could be assigned to a single cluster so as to increase the number of links in the cluster.

Based on the criterion function ROCK estimates the so-called “goodness measure” for a

pair of clusters Ci , and Cj . The goodness measure g(Ci ,Cj) of a pair of clusters is the

number of cross links between the clusters divided by the expected number of cross links

87

between them that is, g(Ci ,Cj) = link [Ci ,Cj]

(ni+nj)1+2f (θ)−n
1+2f (θ)
i −n

1+2f (θ)
j

, where ni and nj are the

numbers of records in the corresponding clusters, and link [Ci ,Cj] is the number of cross

links between the clusters. ROCK uses the goodness measure for merging the clusters.

Note that each record belongs to only one cluster. However, an attribute value may appear

in several clusters.

ROCK requires the desired number of clusters k as an input. It then draws a random

sample (of size bigger than k) from the data set. Initially it considers each record of the

sample as a cluster. It next computes links for each pair of records of the sample. Based on

these links, ROCK subsequently computes the goodness measure for each pair of clusters.

The pair with the maximum goodness measure is then merged together. After that the

goodness measures of the new cluster with all other clusters are calculated. ROCK then

goes into the next hierarchical merging iteration. This process continues until the records

of the sample are clustered in k different clusters. Finally, ROCK assigns each of the

remaining records to the most appropriate cluster among these k clusters. The user defined

threshold is difficult to determine without prior knowledge of the data set [16]. We argue

that large number of links indicates the existence of high number of common neighbors

rather than the similarity between the records. It is possible for a record to be clustered

with records which are less similar to it than other records out of the cluster. Additionally,

for a low threshold a large number of links between two records may be established without

indicating sufficient similarity between them. Besides, ROCK assumes that all attributes

are categorical and does not take advantage of natural ordering among numerical values.

Dutta, Mahanta and Pujari [27] proposed an agglomerative hierarchical clustering al-

gorithm called QROCK - a quick version of the ROCK algorithm. The underlying principle

of QROCK is essentially the same as the underlying principle of ROCK. However, the ter-

mination condition has been simplified in QROCK. In ROCK the algorithm terminates

when either existing clusters do not have any link/s across them or the user defined number

of clusters are obtained. Dutta et al. pointed out that if ROCK algorithm terminates by

the former criterion, then the final clusters are simply the connected components of the

graph that represents the data set. This graph is constructed by considering the records as

the vertices; two vertices a and b are connected by an edge if and only if there is at least

one link between the records Ra and Rb corresponding to the vertices a and b respectively.

Dutta et al. argued that out of the two termination criteria used in ROCK, the criterion

88

that terminates the algorithm when there are no links between different clusters is more

natural. In fact, it is unrealistic to expect a user to specify appropriate number of clusters

for a large data set, especially without any prior knowledge of the data set. A more realistic

approach is to let a user choose the similarity threshold for determining neighbors and then

the algorithm finds out the clusters that correspond to the connected components of the

graph. By adjusting the threshold a user can obtain a suitable set of clusters.

QROCK produces same clusters as ROCK terminated under the same termination

condition. However, the algorithm of QROCK is completely different from the algorithm

underlying ROCK. QROCK simply constructs a graph from the given data set and the user

defined threshold θ, and then finds connected components in the graph.

As QROCK just needs to compute the neighbor list of each record and does not need

to perform several other tasks such as to compute number of links between the records

and build local and global heaps - it is a very fast and simple algorithm. The overall

complexity of the algorithm is O(n2), where n is the number of records. On the other

hand, the complexity of ROCK is O(n2logn + nmnma) where mn is the maximum number

of neighbours, and ma is the average number of neighbours. Thus, in the worst case the

complexity of ROCK is O(n3)

Dutta et al. compared the performance of QROCK algorithm against the ROCK

algorithm. They used 8124 records of the Mushroom data set and 4544 records of the

Landslide data set. Both data sets were obtained from UCI machine learning repository.

The data sets were truncated into 1000, 2000, 3000 and 4000 records to test the programs

for different input sizes. Times in seconds to run the programs on Mushroom data set and

Landslide data set are presented in Table 6.1 and Table 6.2 that were originally presented

in [27]. These results demonstrate a much better performance of QROCK over ROCK.

N ROCK QROCK
1000 2.196 0.278
2000 8.397 1.058
4000 41.398 4.06
8124 161.903 18.907

Table 6.1: Time taken by the whole program in seconds on the mushroom data set.

QROCK is simpler and quicker than ROCK. We note that under a given threshold if

89

N ROCK QROCK
1000 0.677 0.171
2000 2.342 0.647
4000 11.208 2.508
4544 14.71 3.242

Table 6.2: Time taken by the whole program in seconds on the landslide data set.

two records are similar to each other then they are always clustered together by QROCK. We

also note that QROCK does not take into account the number of links between two records.

However, for different values of θ, QROCK may produce different clusters. Selection of an

appropriate threshold θ in QROCK is essential.

In 2002 Barbara, Couto and Li [9] proposed COOLCAT, which clusters records of a

data set into k non overlapping clusters, where k is a user defined number. COOLCAT is

an entropy based heuristic algorithm for clustering records. COOLCAT is based on the fact

that entropy of a collection of similar records will be lower than the entropy of a collection

of dissimilar records. They aimed to minimize the expected entropy of the whole cluster

arrangement.

COOLCAT consists of two phases: initialization phase and incremental phase. In the

initialization phase it first draws a random sample from the data set. It then selects records,

from the sample, that has maximum entropy. These two records are then placed in two

separated clusters. COOLCAT then selects the third record which maximizes the minimum

pairwise entropy with the two existing clusters. This third record is then considered as the

third cluster. COOLCAT continues the iteration until it creates k most dissimilar clusters

out of the records of the sample. Finally, in the incremental phase each of the remaining

records of the data set is assigned to one of the k clusters such that the expected entropy of

the whole arrangement is minimized. In addition to COOLCAT a number of information

theory based categorical value clustering techniques has been proposed in [7, 65, 6, 42].

In 1998 Gibson et al. proposed a categorical value clustering technique, called STIRR,

based on the methods from non-linear dynamical systems motivated by spectral graph

partitioning [39]. STIRR represents a data set by a hyper-graph, where the vertices are

the values appearing in the data set and the hyper-edges are the records - as illustrated in

Figure 6.4, which is very similar to a figure presented in [9]. The data set shown in the

90

Figure 6.4 has three attributes A, B and C. The attribute A has three values, that appear

in the data set, a1, a2 and a3. Similarly, each of the attributes B and C has three values.

All these values have been represented by the vertices of the corresponding hyper-graph.

The data set has seven records which are represented by the hyper-edges of the graph.

A B C

a
1

a
2

a

a

b1

b1

b1

c
1

c

c

c

b2 2

R1

3

R2

R

R4

1

2

R5

R6

R7

a

a

3

a

b1

b

b c

c

c

1

1

2

a

a

a

1

b

b

b

c

c

c

1

1

2

2

2

3

3

3

3 3 3

3 2 3

Figure 6.4: Representation of a data set as a hyper-graph.

STIRR performs a clustering of the vertices based on weights. As an end result two

values belonging to an attribute are clustered together if they co-appear with the same

common values belonging to other attributes.

Many clustering techniques require user defined parameters and prior knowledge on

data sets. Such requirements can cause a user created bias, and expensive trial and er-

ror steps to find suitable parameter values. Moreover, these requirements contradict the

basic concept of exploratory data analysis, where data should “talk” about themselves

freely. Estivill-Castro and Lee presented a few clustering techniques such as AMOEBA

and AUTOCLUST that discover clusters automatically without requiring any user defined

parameters [29, 30]. Lee and Estivill-Castro [63] also extended their techniques to cluster

three dimensional data used in GIS. Additionally, they presented a heuristic to obtain good

initial parameter values that are required by their extended technique.

91

6.4 DETECTIVE : A Novel Categorical Values Clustering

Technique

In this section we present a novel technique called DETECTIVE, A DEcision TreE

based CaTegorIcal ValuE clustering technique, which clusters categorical values belonging

to an attribute in a given data set. The technique can be applied separately on different cat-

egorical attributes. We also present an extension of DETECTIVE, called EX-DETECTIVE,

which allows us to cluster the records of a data set. In many ways, the underlying ideas of

DETECTIVE and EX-DETECTIVE are similar to the underlying ideas of many existing

clustering techniques. Nevertheless, there are also significant differences between them as

we explain in the following subsections.

6.4.1 The Preliminaries

From the definitions of Leaf Influential Attributes (LINFAs) and Leaf Innocent At-

tributes (LINNAs) given in the Introduction of Chapter 5 we remark that records belonging

to a leaf have same value in each categorical LINFA and the values falling in the same range

for each numerical LINFA. Among all attributes of the data set LINFAs are the relevant

attributes as they best describe the class attribute value of the leaf.

A leaf is called homogeneous if all records belonging to the leaf contain same class

value. Otherwise the leaf is called heterogeneous. The predominant class value of the

records in a heterogeneous leaf is referred to as the majority class of the leaf. Any other

class value that appears in at least one record of a heterogeneous leaf is called a minority

class. Furthermore, two leaves are called siblings if their leaf-paths differ only in the last

node. Any two records belonging to two sibling leaves have all corresponding categorical

values the same and numerical values falling in the same range for all the LINFAs except

for the LINFA tested on the last node.

6.4.2 DETECTIVE

In order to cluster a categorical attribute, say A, DETECTIVE first builds a decision

tree (using an existing algorithm such as See5) that considers A as the class attribute.

Suppose that it produces a decision tree with l leaves L1, L2, . . . Ll. We use Ri to denote a

horizontal segment of the data set that is a set of records belonging to Li.

92

Suppose Lh is a heterogeneous leaf having the majority class Cp and the minority class

Cq. DETECTIVE clusters together the values Cp and Cq of class A within the horizontal

segment that contains the set Rh. Additionally, let the leaves Li and Li+1 be two sibling

leaves (and each of them are homogeneous) having class values Cp and Cr. DETECTIVE

clusters the class values Cp and Cr within the horizontal segment containing the set of

records Ru = Ri ∪ Ri+1. However, unlike traditional clustering techniques, DETECTIVE

introduces different levels of similarity in different clusters. The class values belonging to

a heterogeneous leaf are considered to be more similar than the class values belonging to

a pair of sibling leaves, either homogeneous or heterogeneous. Suppose out of two sibling

leaves Li and Li+1, one leaf Li is heterogeneous having class values Cp and Cq. The class

value of Li+1 is say, Cr. DETECTIVE considers Cp and Cq more similar than Cp and Cr

or Cq and Cr.

6.4.3 The Essence

The class values belonging to the records of a heterogeneous leaf are considered similar

due to the following reasons. A decision tree building algorithm aims to produce homoge-

neous leaves. However, in some cases it still produces heterogeneous leaves since any further

splitting does not reduce the entropy or the uncertainty about the class values. Entropy of

the class values of a set of records depends on the probability distribution of the values in

the set. If the distribution is uniform then the entropy is the highest. On the other hand,

if all records of the data set have the same value then the entropy is zero. Therefore, the

lower the entropy the better the clustering. Since a heterogeneous leaf has the minimum

entropy, which can not be significantly reduced by further splitting the leaf, we argue that

the class values belonging to the leaf are a cluster within that segment represented by the

leaf. We consider these class values so similar that they can not easily be further separated.

We remind the reader that here by clustering we mean clustering the values rather than

clustering the records. We argue that two values that are similar within one leaf, that is,

horizontal segment of the data set may not be similar within another segment. Recall our

example where Nurse and Secretary are two categorical values of an attribute Profession.

They can be considered similar among people older than 60 years, since both of these jobs

were typically performed by females and neither of them required tertiary degrees in the

past. However, as these jobs are nowadays performed by males and females alike and nurs-

93

ing now requires a Bachelor degree, they may not be similar for the younger part of the

population.

Additionally, each node tests a value of an attribute. If the attribute is categorical then

the corresponding node typically has as many children as the domain size of the attribute.

This corresponds to dividing the data set, or a segment of it, into as many partitions as

there are values in the domain of the attribute. However, if the attribute is numerical then

the data set is divided into two partitions. Thus, if the node tests a categorical attribute,

then the records in each partition contain same values of the attribute, otherwise they

contain values that fall within same range. Therefore, the records of a leaf share the same

values for all categorical LINFAs and the same range for all numerical LINFAs. The class

values are strongly connected with the value of each of the LINFAs (within the segment of

the data set) indicating similarity between the class values. We note that essentially the

same similarity criterion is used in other categorical clustering algorithm such as CACTUS

and STIRR. What distinguishes our algorithm is the fact that we do not insist on common

values in all attributes as a criterion for similarity. In particular, we do not consider leaf

innocent attributes. We argue that these attributes do not have significant influence on the

class value, as they can not further improve the entropy.

Similarly, the class values belonging to two sibling leaves are also strongly connected

with all corresponding values of the LINFAs except the one tested in the last node. Hence,

class values of the records belonging to two sibling leaves are also considered similar. More-

over, two sibling leaves of a tree can be thought of as a heterogenous leaf obtained by one

step pruning of the tree. Therefore, from that point of view, class values belonging to two

sibling leaves are also similar. However, since this heterogeneous leaf is artificially created

by pruning the tree, this does not represent a natural clustering and therefore indicates a

weaker similarity between the values.

The essence of our method is to horizontally partition (cluster) the data set and consider

two categorical values of the attribute (that has been considered as the class attribute)

similar if they belong to the same partition. We note that in general for different categorical

attributes we get different sets of partitions. Our method has two main characteristics:

Firstly, similarity is defined within a horizontal partition (attribute specific) only. Secondly,

for measuring similarity between categorical values we only consider relevant attributes (the

LINFAs).

94

6.4.4 Illustration

We now illustrate the ideas and definitions used in DETECTIVE on a few examples

(Figure 6.5). We first introduce a synthetically created data set called Credit Risk (CR)

data set. The CR data set has four numerical and one categorical non-class attributes. It

also has a categorical class attribute. The numerical attributes are Income, House Rent,

No. of Dependents, and Job Grade. Their domains are [30, 100], [100, 600], [0, 7], and

[1, 4] respectively. The only categorical non-class attribute is City. The domain of City is

{Sydney, Melbourne, Newcastle, Armidale}. The categorical class attribute is Credit Risk,

the domain of which is {yes, no}. Detailed properties of CR data set have been presented

in subsection 6.7.1.

In order to cluster values of the attribute City, DETECTIVE creates a decision tree

that considers City as the class attribute. In Figure 6.5 we present a section of the decision

tree. There are six internal nodes and five leaves in this section. Leaf 22 and Leaf 23

are examples of heterogeneous leaves. There are five records belonging to Leaf 22 out of

which four records have value Armidale for the attribute City, and the fifth record has a

different value. Therefore, majority class of the leaf is Armidale. The remaining leaves

are homogeneous. Leaf 19 and Leaf 20 are siblings. They have exactly the same leaf-path

except for leaves themselves and their LINFAs include Credit Risk, Income, and House

Rent. Similarly, Leaf 22 and Leaf 23 are siblings.

Leaf 19 corresponds to a horizontal partition containing four records. Each record

has Sydney as the value for attribute City. Sydney always appears with the value yes for

attribute Credit Risk (noted as risk in the figure), numerical values falling within the range

greater than “eighty two” and less than or equal to “ninety two” for attribute Income,

numerical values falling within the range less than or equal to “hundred and thirty five” for

attribute House Rent. However, Leaf 20 represents another segment of the data set con-

taining 2 records. Each record has Melbourne as the value for attribute City. This segment

is similar to the segment represented by Leaf 19 except for the attribute Income. Therefore,

within the union of these two segments Sydney and Melbourne are similar. However, within

the union of two other segments represented by Leaf 22 and Leaf 23 (two siblings), Sydney

and Armidale are similar. This illustrates us that different value pairs of attribute City are

similar within different segments.

Recall that class values belonging to records of a heterogeneous leaf are considered

95

risk

Yes

income

> 82

rent

income job

> 135<= 135

<= 92

Syd
(4)

Mel
(2)

Leaf 19 Leaf 20

> 92 >3

Arm
(4)

Leaf 21

income

<=3

Arm
(5/1)

Leaf 22

Syd
(3/1)

Leaf 23

<= 91 > 91

Figure 6.5: A section of the decision tree built on the CR data set. The tree considers
attribute City as class attribute.

similar to each other. Hence, within the segment represented by the heterogeneous leaf

Leaf 22, Armidale is similar to Sydney, which is the minority class of the leaf. We consider

that the similarity among class values belonging to a heterogeneous leaf is greater than the

similarity among class values belonging to two sibling leaves.

DETECTIVE has some basic similarities with existing techniques. It also has some

significant differences with them. We discuss the similarities and the differences as follows.

6.4.5 The Similarities

Many existing techniques measure similarity of two values (belonging to a categorical

attribute) based on their co-occurrences with a common value of another categorical at-

tribute. Although DETECTIVE does not use this concept directly to produce a cluster,

two values found similar by DETECTIVE co-appear with a common value or common

range of values belonging to attributes on the leaf path. In that respect, the underlying

96

idea of DETECTIVE is similar to the basic concept of many existing techniques.

Another group of existing techniques rely on the information theoretic approach. In

order to cluster the records, these techniques first rearrange them and then horizontally

partition the whole data set into a number of clusters in such a way that each cluster

upholds a low entropy. Therefore, the entropy of the whole arrangement is minimised.

DETECTIVE takes a similar approach to clustering categorical values belonging to an

attribute by using a decision tree builder which partitions the data set so that in each

partition the values belonging to the attribute that we are clustering generate as low entropy

as possible. Therefore, DETECTIVE ensures that the values, belonging to the attribute,

within each horizontal partition are very similar to each other.

6.4.6 The Difference

DETECTIVE differs from existing techniques on few aspects. First, unlike other tech-

niques DETECTIVE also takes values belonging to a numerical attribute into account in

measuring similarity of two categorical values. If two categorical values co-occur with val-

ues (of a numerical attribute) that fall within a same range, then the categorical values are

considered similar. Thus, DETECTIVE is directly applicable to a data set having both

numerical and categorical attributes, unlike most existing techniques which are suitable for

data sets having categorical attributes only.

Second, unlike most traditional clustering techniques DETECTIVE divides a data set

in horizontal partitions, specific to a particular attribute. It extracts similarity of the values

belonging to a categorical attribute within each horizontal partition of the data set, instead

of within the whole data set. We note that two attribute values may be considered very

similar within a particular segment of a data set while they may not be considered similar

in the data set as a whole. Third, for measuring similarity between two categorical values

DETECTIVE focuses on few relevant attributes, the LINFAs, instead of all attributes. By

“relevant attributes” we mean those attributes which have high influence with the concerned

attribute, and which explain the attribute the best within a horizontal segment of the data

set.

97

6.4.7 EX-DETECTIVE

DETECTIVE clusters categorical values (rather than records) belonging to an at-

tribute to fulfil its primary objective in supporting noise addition to categorical values. How-

ever, traditional clustering techniques usually cluster records and therefore we now present

an extended version of DETECTIVE called EX-DETECTIVE for clustering records.

Just like DETECTIVE, EX-DETECTIVE first makes use of a decision tree to partition

records into leaves for each categorical attribute separately. Then it forms clusters of records

such that two records belong to the same cluster if and only if they belong to the same leaf

in every such decision tree.

If the data set also has numerical attributes then EX-DETECTIVE first computes

clusters of records based on all categorical attributes. Within each of these clusters, EX-

DETECTIVE then applies an existing clustering technique for numerical attributes. How-

ever, if the data set does not have any numerical attributes then the clusters obtained from

all categorical attributes are used as the final output.

EX-DETECTIVE also allows a data miner to select a set of categorical and numerical

attributes to use instead of all attributes of the data set for clustering the records. In that

case it first clusters the records based on all selected categorical attributes. Within each

cluster it then applies an existing clustering technique on the numerical attributes of the

set.

We now explain the steps of EX-DETECTIVE on the following example. For sim-

plicity, let us consider a data set having ten records R1 to R10 and three attributes A,

B and C, where all of them are categorical. EX-DETECTIVE first uses the same de-

cision tree approach as DETECTIVE to partition the records based on an attribute A.

Let RA1 = {R1, R2, R3, R4} (shown in Figure 6.6) be a horizontal segment correspond-

ing to the leaf LA1 of the decision tree DTA that considers attribute A as the class

attribute. Similarly, RA2 = {R5, R6, R7, R8, R9, R10} is the segment corresponding to

leaf LA2. EX-DETECTIVE then uses the same process for another attribute B. Let

RB1 = {R1, R2, R3, R4, R5} and RB2 = {R6, R7, R8, R9, R10} be two segments of the

data set corresponding to leaves LB1 and LB2 for decision tree DTB. EX-DETECTIVE

produces clusters of records RAB1 and RAB2 (see Figure 6.6) based on the attributes

A and B, where RAB1 = RA1 ∩ RB1 = {R1, R2, R3, R4} and RAB2 = RA2 ∩ RB2 =

{R6, R7, R8, R9, R10}. The intersection RA1 ∩RB2 produces an empty set and the intersec-

98

R

R

R

R

R

R

R

R

R

A B

R1

2

3

4

5

6

7

8

9

10

 AB
R R R

A1
R

R

A2R

R
B1

B2

R
 AB1

R
 AB2

R

R

R

R

R

R

R

R

R

B

R1

2

3

4

5

6

7

8

9

10

 AB
R R R

A1
R

R

A2R

R
B1

B2

R
 AB1

R
 AB2

A

Figure 6.6: Basic steps of EX-DETECTIVE - for clustering records based on attributes A
and B.

tion RA2 ∩RB1 produces a set R5 having one record. These two intersections are therefore

not considered as clusters. For determining clusters of records based on all three attributes,

EX-DETECTIVE again uses DETECTIVE to process attribute C. Suppose, the values

of attribute C are clustered together in two horizontal segments RC1 = {R2, R3, R4, R10}
and RC2 = {R1, R5, R6, R7, R8, R9} as shown in Figure 6.7. Therefore, based on all three

attributes - we get two final clusters of records RABC1 = RAB1 ∩ RC1 = {R2, R3, R4} and

RABC2 = RAB2 ∩RC2 = {R6, R7, R8, R9}.
Suppose that along with three categorical attributes the data set also has two numer-

ical attributes D and E. EX-DETECTIVE first obtains clusters of records based on all

categorical attributes. Within each cluster it then applies a conventional clustering tech-

nique such as distance-based clustering and k-means clustering on the numerical attributes

only. In Figure 6.8 there are two clusters of the records, RABC1 and RABC2, based on the

categorical attributes. Within each of these segments a conventional clustering technique

(for numerical attributes) is applied, and thereby produce the final clusters RABCDE1 and

RABCDE2.

EX-DETECTIVE produces clusters where within each cluster all categorical values

99

R

R

R

R

R

R

R

R

R

R1

2

3

4

5

6

7

8

9

10

R R R

R

R

R

R

R

R

R

R

R

R1

2

3

4

5

6

7

8

9

10

R R R
 AB C ABC

R

R

 AB1

 AB2

R

R

R

R

 ABC1

 ABC2

C1

C2

Figure 6.7: Clustering records based on the attributes A, B and C.

belonging to each attribute are similar to each other and all numerical values belong-

ing to each numerical attribute are close to each other. Therefore, clustering records by

EX-DETECTIVE (based on all attributes) may sometimes be overly restrictive and may

produce small number of clusters of small sizes, especially if the data set has too many at-

tributes. Additionally, it is not unlikely that few attributes of a data set will be uncorrelated

(non-influential) to other attributes. Presence of such non-influential attributes can cause

small clusters. However, a user can assign a weight to each categorical attribute such that

the attribute with higher weight has more influence on resulting clusters. In an extreme

case, the weight of zero means that the particular attribute will not be taken into account

when constructing the clusters. This can be achieved by pruning the tree to the maximum

level. The tree with the maximum level pruning has only one leaf that has all records in

it and therefore, such a pruning assigns zero weight to the attribute. Less pruning means

allocation of more weight and vice versa.

Since EX-DETECTIVE can assign various weights to the attributes the final cluster-

ings obtained by it should not be overly restrictive. Moreover, by choosing different sets of

weights for the attributes a user can explore different possible clusterings, which in turn can

help to extract useful information from a data set. For example, an obvious choice would

100

R

R

R

R

R

R

R

R

R

R

1

2

3

4

5

6

7

8

9

10

ABC
R R

 ABCDE

R

R

ABC1

ABC2

R

R
R

R
 ABCDE1

 ABCDE2

R

DE

DE1

DE2

Figure 6.8: Clustering records of a data set having numerical attribute/s along with cate-
gorical attribute/s.

be to give more weight to influential attributes than to non-influential ones.

Like many existing techniques, such as CACTUS, EX-DETECTIVE clusters records

using the similarity among the values belonging to an attribute. EX-DETECTIVE measures

the similarity among the values in a way which is the same as DETECTIVE. Therefore, EX-

DETECTIVE also has the advantages that DETECTIVE has. For example, in measuring

the similarity of categorical values belonging to an attribute EX-DETECTIVE uses few

relevant attributes only. It is reasonable to use just the relevant attributes that explain

an attribute the best. Additionally, non-influential attributes are still considered by the

decision tree builder.

In order to measure the similarities of categorical values belonging to an attribute EX-

DETECTIVE divides a data set in horizontal partitions, which is specific to the categorical

attribute. The significance of such a partitioning is that it allows a user to measure the

similarity of categorical values within the partitions separately. Two categorical values may

be similar within a horizontal partition while they may not be similar within the whole

data set or within another partition. The advantage of the horizontal partitioning has been

illustrated in Section 6.2 with the nursing and secretarial job example.

The above mentioned advantages of EX-DETECTIVE in measuring similarity of the

101

categorical values belonging to an attribute result in its overall advantages in clustering

records, since the clusterings of records are built on the similarities of the values.

6.5 CAPT: Categorical Attributes Perturbation Technique

We now present a technique called Categorical Attribute Perturbation Technique (CAPT).

It uses DETECTIVE to cluster categorical values and then within each cluster it changes a

categorical value (with a predefined probability) to another categorical value belonging to

the same cluster. We explain CAPT with examples as follows. Let us apply CAPT on the

CR data set and perturb the categorical attribute City. CAPT first uses DETECTIVE on

the attribute City as the class attribute, and thereby clusters the attribute values. CAPT

then scans the records of the data set one by one. For each record, it identifies the leaf

which the record belongs to. Let us assume that a record belongs to Leaf 22, which is a

heterogeneous leaf (see Figure 6.5). The majority class of the leaf is Armidale while the

minority class is Sydney. Additionally, Leaf 22 has a sibling which is Leaf 23. The majority

class of Leaf 23 is Sydney. CAPT either changes the class value of a record belonging to a

leaf to the majority class of its sibling leaf or shuffles the class values of the leaf, if the leaf

is heterogeneous. CAPT changes the class value to the majority class of the sibling leaf

with a user defined probability p, and if the leaf is heterogeneous CAPT shuffles the class

values of the leaf with a probability (1− p).

For Leaf 22 CAPT changes the class value of a record to Sydney with a user defined

probability p and it shuffles the class values of Leaf 22 with a probability (1 − p). While

shuffling, regardless of the class value of a record it assigns a value equal to the value of the

majority class with a probability (1− p) ∗ q, and assigns a value same as the minority class

with a probability (1−p)∗l. In this case, for the class value of the record it assigns Armidale

with a probability (1−p)∗q while it assigns Sydney with a probability (1−p)∗l. Probabilities

q and l are determined by the number of majority records (i.e. number of records having

the class values which are same as the majority class) and the number of minority records.

Let m be the number of majority records, and n be the number of minority records. CAPT

calculates q and l as follows: q = m
m+n and l = n

m+n .

In case of the existence of more than one minority class in a leaf, CAPT assigns the

value of the majority class with a probability (1 − p) ∗ q, and ith minority class with a

probability (1 − p) ∗ li for the class value of each record belonging to the leaf. Let m be

102

the number of records with majority class, and ni be the number of records having the

ith minority class. CAPT calculates the probability q and the probability li as follows:

q = m
m+k , and li = ni

m+k , where k =
∑t

i=1 ni and t is the number of different minority classes

in the heterogeneous leaf.

Let us now illustrate another example where a record belongs to Leaf 19, which is a

homogeneous leaf having a sibling. In such a case CAPT changes the class value (Sydney)

of the record to the class value (Melbourne) of the sibling leaf with a user defined probability

p. However, with a probability (1−p) it leaves the class value of the record unchanged. If a

leaf has more than one sibling then the above mentioned probability p is equally distributed

among the siblings. Alternatively, the probability p could also be distributed among the

siblings, proportionally to the number of records in each sibling.

If a heterogeneous leaf does not have any siblings CAPT shuffles the class values of

the leaf with a probability equal to one. In shuffling class values CAPT uses the same

approach for any heterogeneous leaf. For any attribute which is totally unrelated to all

other attributes, CAPT perturbs a value belonging to that attribute to another value with

a user defined probability.

We apply CAPT on the original data set once for each non-class categorical attribute.

Each time it produces a data set with one perturbed attribute in it. From each of these

perturbed data sets we take only the values belonging to the perturbed attribute and thereby

produce a data set where each non-class categorical attribute is perturbed and all other

attributes are unperturbed.

Application of CAPT along with the Leaf Innocent Attribute Perturbation Technique

(LINNAPT), and Leaf Influential Attribute Perturbation Technique (LINFAPT), and Class

Attribute Perturbation Technique (RPT or PPT) will result in perturbation of all attributes

of a data set. Such a perturbation should provide higher security of the data set.

6.6 Experimental Results

We perform two phases of experiments. In the first phase, we apply both DETECTIVE

and CACTUS on a synthetic data set called CS data set in order to investigate the quality

of DETECTIVE in discovering similarity. In the second phase of the experiments, we

apply CAPT on two synthetic data sets CR and CS in order to perturb them. For each of

these data sets, we then compare the data quality of the perturbed data sets with the data

103

quality of the original data set for estimating the effectiveness of CAPT in preserving the

data quality while perturbing the data sets. We measure data quality of a perturbed data

set by evaluating similarities of the decision trees built on the perturbed data set and on

the original data set. We compare a perturbed tree to the original tree by evaluating the

similarities of the perturbed rules with the original rules. Based on the degree of similarity

of a perturbed rule and the best matching original rule, the perturbed rules are informally

categorized in three different types, Type A, Type B, and Type C. We next give an example

of a rule set that we shall subsequently use to illustrate Type A, Type B, and Type C.

Let P, Q, R and S be non-class attributes, and let C be the class attribute of a data

set. Suppose P, Q and R are numerical attributes with domain [1,10]. We assume S and C

are categorical attributes with domain {s1, s2, s3} and {c1, c2} respectively. Suppose there

are altogether five original rules Ro(1), Ro(2), Ro(3), Ro(4) and Ro(5).

P(> 5) and Q(≤ 2) and S(= s1) ⇒ c1,

P(> 5) and Q(≤ 2) and S(= s2) ⇒ c2,

P(> 5) and Q(≤ 2) and S(= s3) ⇒ c1,

P(> 5) and Q(> 2) ⇒ c2, and

P(≤ 5) ⇒ c2.

• Type A: If a perturbed rule is exactly the same as the best matching original rule,

then we define the perturbed rule as Type A. For example, a perturbed rule Rp(1):

P(> 5) and Q(≤ 2) and S(= s1) ⇒ c1, is identical to its best matching original rule

Ro(1) and therefore, Rp(1) is defined as Type A.

• Type B: If a perturbed rule differs from its best matching original rule only in

conditional values of corresponding numerical attribute/s, then the perturbed rule is

defined as Type B rule. For example, a perturbed rule Rp(2): P(> 6) and Q(≤
2) and S(= s1) ⇒ c1, differs from its best matching original rule Ro(1) only in the

conditional value for attribute P. Therefore Rp(2) is defined as Type B.

• Type C: If a perturbed rule is significantly different from its best matching original

rule then the perturbed rule is defined as Type C. For example, a perturbed rule

Rp(3): P(> 8) and Q(≤ 2) and R(< 3) ⇒ c1 is significantly different from its best

matching original rules Ro(1) and Ro(3) and therefore denote Rp(3) as Type C.

104

We measure the similarity of a perturbed tree Tp(1) with the original tree To by eval-

uating the types of the perturbed rules and their corresponding weights. For example, a

perturbed tree Tp(1) has “Type A” rules which apply to 90% of records and “Type C” rules

that apply to the 5% of the records belonging to the perturbed data set. Another perturbed

tree Tp(2) has “Type C” rules that apply to 70% of the records and “Type A” rules that

apply to 5% of the records belonging to the corresponding perturbed data set. Therefore,

we consider that Tp(1) and the original tree are more similar than the Tp(2) and the original

tree.

Our experimental results show that the quality of a data set perturbed by CAPT re-

mains high. We use See5 decision tree builder to create all decision trees (unless otherwise

mentioned) of this section. We now present the details of our experiments with DETEC-

TIVE and CAPT.

6.6.1 Experiments on DETECTIVE

We use 399 records of a synthetically created data set called Customer Status (CS)

data set. CS data set has five categorical non-class attributes and a categorical class at-

tribute. Five categorical non-class attributes are Country of Origin, Car Make, Profession,

Parents’ Country, and Favorite City. The categorical class attribute is Status. Domains of

the attributes are as follows: Country of Origin = {USA, England, Australia}, Car Make

={Toyota, Ford, Holden, Nissan}, Profession ={Scientist, Engineer, Academic}, Status

={Good, Bad}. Domain size of each of the attributes Parents’ Country and Favorite City

is thirty. These two attributes have randomly distributed values and are not correlated

with other attributes. Detailed properties of the CS data set have been presented in sub-

section 6.7.2.

We apply DETECTIVE on the CS data set in order to cluster values belonging to

the attribute Car Make. DETECTIVE creates a decision tree, shown in Figure 6.9, that

considers Car Make as class attribute. In the decision tree there are two heterogeneous

leaves, Leaf 1 and Leaf 3. Leaf 1 contains 247 records out of which 132 records have Ford,

62 records have Toyota, 48 records have Nissan, and 5 records have Holden for the attribute

Car Make. DETECTIVE discovers that within the segment represented by the Leaf 1, Ford

- Toyota are the most similar. Moreover, Ford - Nissan and Toyota - Nissan are very sim-

ilar too. Similarity of each value pair can be measured by multiplying their corresponding

105

Status

Good

Country of
Origin

(70)
ToyotaToyota

(55/29)
Nissan
(27)

Bad

EnglandAustraliaUSA

Leaf 2 Leaf 3 Leaf 4Holden:
Nissan:
Toyota:
Ford:

62
132

48
05

Details of Leaf 1

Details of Leaf 3

Holden:
Ford:
Nissan:

Toyota: 26
19

04
06

(247/115)

Leaf 1

Ford

Figure 6.9: Details of a decision tree built from the unperturbed CS data set. The tree
considers attribute Car Make as class attribute. This tree is used for clustering values of
the attribute Car Make.

number of occurrences. For example, similarity between Ford - Toyota, Ford - Nissan, and

Toyota - Nissan can be measured as 8184, 6336, and 2976 respectively. Similarly, within

another heterogeneous leaf, Leaf 3 DETECTIVE discovers Toyota - Holden to be the most

similar. Moreover, there are three sibling leaves - Leaf 2, Leaf 3 and Leaf 4. Within the

union of the segments represented by these three leaves it also discovers the similarity of

Toyota and Nissan.

Country of Car Profession Parent’s Favorite Status
Origin Make Country City

USA Toyota Scientist · · · · · · Good
England Ford Scientist · · · · · · Good
USA Ford Scientist · · · · · · Good
England Toyota Scientist · · · · · · Good

Table 6.3: The cluster produced by CACTUS from the CS data set.

106

We then apply CACTUS on the CS data set. We exclude two totally uncorrelated

attributes Parents’ Country, and Favorite City from the CS data set prior to the application

of CACTUS, as they would cause large number of small clusters to be discovered. However,

for DETECTIVE we did not need to exclude such attributes manually. DETECTIVE does

not use them in clustering, since they do not appear in the decision trees as Influential

Attributes. While applied on CS data set, CACTUS produces a cluster shown in Table 6.3.

From this cluster we learn that Toyota and Ford are similar. CACTUS does not discover

any other similarity among the values belonging to the attribute Car Make. However, we

note that DETECTIVE discovers many other similarities in addition to the one CACTUS

discovers. Furthermore, it can also provide some sort of measure of similarity level so as to

conclude which value pair is more similar than other value pairs.

6.6.2 Experiments on CAPT

Experiments using CR data set

We use two synthetic data sets; CR data set and CS data set. We first use 399 records

of the CR data set. From the original CR data set, we create a decision tree To that considers

the natural class attribute Credit Risk as the class attribute. We then apply CAPT on the

data set and perturb values for the categorical non-class attribute City. In all experiments

on CAPT we use 0.1 as the value of the user defined probability p for changing the class

value to the majority class of a sibling leaf/leaves. After perturbation we create another

decision tree Tp (from the perturbed data set) that also considers the natural class attribute

Credit Risk as the class attribute. We then evaluate the similarity of these two decision

trees.

We run this experiment ten times. Each time we end up with a decision tree Tp which

is extremely similar to the decision tree To. The differences of the Tps with the To include

slightly different number of records belonging to some leaves, slightly different constant

values used for numerical attributes in some nodes, and a different order for testing couple

of attributes in some deep portions of the tree. Nevertheless, for all of the perturbed trees

almost all of the logic rules are exactly the same as the corresponding logic rules of the

original tree. Eight (out of ten) perturbed trees have Type A logic rules for more than 50%

of the records. Furthermore, eight trees have either Type A or Type B logic rules for more

than 90% of the records. Each of the trees has either Type A or Type B logic rules for

107

more than 85% of the records. On the other hand, none of them has Type C logic rules for

any of the records. Moreover, the number of misclassified records for any of the perturbed

trees is low. As the decision tree algorithms are instable to noise [64], these results suggest

the preservation of high data quality in the perturbed data sets.

Experiments using CS data set

We then use 399 records of the CS data set. From the original CS data set we first

produce two decision trees, To(car make) and To(status) (shown in Figure 6.9 and in

Figure 6.10 respectively), that consider attribute Car Make and attribute Status as class

attribute respectively. We then apply CAPT on the CS data set and perturb only the

categorical non-class attribute Car Make. We create two decision trees, Tp(status) and

Tp(car make), from the perturbed data set. We evaluate the similarity of a decision tree

built on the perturbed data set with the corresponding decision tree built on the original

data set.

Bad
(6)

Leaf 1

Profession

Bad
(13)

Good
(5)

AcademicScientist
Engineer

Country of Origin

USA

Good
(58)

England

Bad
(70)

Australia

Profession

(11)
Bad

Engineer

Bad
(15)

Good
(4)

Toyota Ford

Country of Origin

Good
(65)

USA
England

Good
(56)

Australia

Profession

Bad
(6)

Engineer

Good
(0)

Good
(11)

Country of Origin

AustraliaUSA
England

ProfessionBad

Engineer

Scientist Academic

Good Good

(0) (6)
Bad
(4)

Leaf 2 Leaf 3 Leaf 4 Leaf 5

Leaf 6 Leaf 7 Leaf 8 Leaf 11 Leaf 12 Leaf 13 Leaf 16 Leaf 17 Leaf 18

Scientist Academic
Leaf 14

Leaf 9 Leaf 10

(42)
Good

(27)

Holden Nissan

Car Make

Scientist Academic

Figure 6.10: A decision tree To(status), built on the original CS data set. The tree considers
the natural class attribute Status as class attribute.

We also run this experiment ten times. Each time we produce a decision tree Tp(car make)

which is extremely similar to the corresponding decision tree To(car make). All perturbed

trees Tp(car make)s have Type A logic rules covering 100% records. The differences be-

tween them (the original and a perturbed tree) include difference in the number of records

belonging to a leaf, and number of misclassified records in a leaf.

Moreover, in each of the ten experiments we get a decision tree Tp(status) which is very

similar to the decision tree To(status). A perturbed tree Tp(status) is shown in Figure 6.11.

Logic rules covering almost all records are similar. Occasionally some logic rules, covering

smaller number of records, differ partially. Some portions of the perturbed trees are pruned

108

forms of the corresponding portions of the original tree. This suggests loss of some small

patterns in the perturbed data sets. However, all big patterns are satisfactorily preserved

in all of the perturbed trees. Seven out of ten perturbed trees have Type A logic rules for

more than 70% of the records. None of the trees has Type C logic rule for any record. We

consider these perturbed trees to be very similar to the original tree.

Country of Origin

USA

Good
(58)

England

Bad
(70)

Australia

Profession

(11)
Bad

Engineer

Bad
(15)

Good
(4)

Toyota Ford

Country of Origin

Good
(65)

USA
England

Good
(56)

Australia

Profession

Bad
(6)

Engineer

Good
(0)

Good
(11)

Leaf 2 Leaf 3

Leaf 4 Leaf 5 Leaf 6 Leaf 9

Scientist AcademicLeaf 7 Leaf 8

Leaf 1

(20/1)
Bad Profession

Academic

Leaf 12
Scientist Academic

Scientist

Good

Engineer

Leaf 13 Leaf 14

(71/34)
Bad
(6)

Good
(8)

Leaf 11Leaf 10

Holden Nissan

Car Make

Figure 6.11: A decision tree Tp(status), built on a perturbed CS data set. The tree considers
the attribute Status as class attribute.

Finally, we apply CAPT on the CS data set in order to perturb all categorical non-

class attributes; Country of Origin, Car Make, Profession, Parents’ Country, and Favorite

City. Two non-class categorical attributes Parents’ Country and Favorite City are totally

uncorrelated with all other attributes and each of them has big domain size. Hence, it is

expected that any random perturbation to them would not affect the data quality of the

perturbed data set. Therefore, we apply CAPT to perturb only other non-class attributes

and examine the data quality of the perturbed data set. We first apply CAPT on the

original CS data set in order to perturb categorical non-class attribute Country of Origin.

We subsequently apply CAPT two more times on the original data set in order to perturb

attributes Car Make, and Profession. Finally, we create a total perturbed data set Dp (by

combining these perturbed data sets) where attributes Country of Origin, Car Make, and

Profession are perturbed. The rest of the attributes are unperturbed. We create decision

trees Tp(country), Tp(car make), Tp(profession), and Tp(status) (from the data set Dp)

that consider attribute Country of Origin, Car Make, Profession, and Status as class at-

tribute respectively. Subsequently from the original data set we build another set of decision

trees To(country), To(car make), To(profession), and To(status), that consider Country

of Origin, Car Make, Profession, and Status as class attribute respectively. We then com-

pare the perturbed trees (trees obtained from perturbed data sets) with the corresponding

109

original trees. For example, we compare each Tp(car make) with the To(car make). This

comparison helps us to investigate the data quality of the perturbed data set.

Status

Good

Country of
Origin

ToyotaToyota
(55/27)

Nissan

Bad

EnglandAustraliaUSA

Leaf 2 Leaf 3 Leaf 4

(247/115)

Leaf 1

Ford

(27/2) (70/2)

Figure 6.12: A decision tree built on a total perturbed CS data set. The tree considers
attribute Car Make as class attribute.

Status

Good

(247/115)
Ford

Leaf 1

Toyota
(152/53)

Leaf 2

Bad

Figure 6.13: A decision tree built on another total perturbed CS data set. The tree considers
attribute Car Make as class attribute.

We run these experiments three times and produce three total perturbed data sets;

Dp1, Dp2 and Dp3. Out of these three experiments two times we produce decision trees

Tp(car make)s which are identical to the decision tree To(car make). Moreover, numbers of

misclassified records in these perturbed trees are not significantly greater than the number

of misclassified records of the original tree To(car make). One of these perturbed trees

Tp(car make) is shown in Figure 6.12 while the original tree To(car make) is shown in

Figure 6.9. Out of three experiments once we produced a decision tree Tp(car make) which

is not extremely similar to the decision tree To(car make). However, this Tp(car make)

110

Exactly Very Similar Dissimilar
Same Similar

Tp(country) 1 1 - 1
Tp(car make) 2 1 - -
Tp(profession) 3 - - -
Tp(status) - - 3 -

Table 6.4: Similarities of perturbed trees with corresponding original trees.

is just a pruned form of the decision tree To(car make) where logic rules for most of the

records are the same. Logic rules for other records are very similar. The tree is shown in

Figure 6.13.

Similarities of other perturbed trees with their corresponding original trees are also very

high. We evaluate the similarity of each perturbed tree with the corresponding original tree

and present the result in Table 6.4. A perturbed tree has been considered in the table as

“Exactly Same” if it has Type A rules for 100% records. If it has Type A rules for at least

60% records and Type C rules for less than 5% records, then the tree has been termed as

“Very Similar”. However, a perturbed tree has been considered as “Similar” if it has Type

A rules for more than 15% records and Type C rules for less than 5% records. Finally, a

“Dissimilar” perturbed tree has Type C rules for more than 10% records and Type A rules

for less than 10% records.

Experiments using J48 decision tree builder

CAPT uses See5 decision tree builder. From the results presented above we learn that

a user employing See5 tree builder can obtain patterns (from a perturbed data set) which

are very similar to the original patterns. However, a user could employ any tree builder

(instead of See5) on the perturbed/released data set. Therefore, we investigate if a user

(applying another tree builder on a perturbed data set) can obtain similar patterns that

he/she would obtain from the original data set. In this investigation, we first use a decision

tree builder called J48 of WEKA, which is available from The University of Waikato web

site [79, 117].

We first build the original decision trees To(status), To(car make), To(country) and

To(profession) from the original CS data set using J48. We then use those three total per-

111

turbed data sets Dp1, Dp2 and Dp3, where attributes Car Make, Country of origin and Pro-

fession are perturbed by CAPT using See5 decision tree builder. From each total perturbed

data set we build a set of trees; Tp(status), Tp(car make), Tp(country) and Tp(profession)

using J48. Finally, the similarity of each perturbed tree with the corresponding original

tree is evaluated and presented in Table 6.5. The result shown in Table 6.5 indicates that

a user employing J48 on a perturbed data set is likely to obtain the patterns, which are

similar to the patterns he/she would obtain from the original data set using J48.

Exactly Very Similar Dissimilar
Same Similar

Tp(country) - 1 1 1
Tp(car make) 1 2 - -
Tp(profession) 1 - - 2
Tp(status) - - 3 -

Table 6.5: Similarities of perturbed trees with corresponding original trees - using J48.

6.7 Properties of Synthetic Data Sets

6.7.1 Properties of Credit Risk (CR) Data Set

Each record of the Credit Risk (CR) data set has been created as follows.

House Rent = a randomly generated integer value between 100 and 600;

if(House Rent <= 300){
Income = a randomly generated integer value between 30 and 100;
if(Income > 50){

Job Grade= a randomly generated integer value between 1 and 4;
if(Job Grade <= 2)
Credit Risk = No;

else
Credit Risk = Yes;

No of Dependents = a randomly generated integer value between 0 and 7;
City = A value is generated with 25% probability for each of the four

possible values (Mel, New, Syd, Arm);
}// end of if(Income > 50)
if(income <= 50){

112

City = A value is generated using the following
probability distribution.

33.33% probability for New,
33.33% probability for Mel,
33.33% probabiliry for Arm,
0% probability for Syd.

if (City == New)
Credit Risk = No;

else
Credit Risk = Yes;

Job Grade = a randomly generated integer value between 1 and 4;
No of Dependents = a randomly generated integer value between 0 and 7;

} // end of if(income <= 50)
} // end of if(House Rent <= 300)

if(House Rent > 300){
City = A value is generated using the following

probability distribution.
50% probability for Mel,
50% probability for Syd,
0% probability for New,
0% probability for Arm;

if (City = Mel){
Credit Risk = No;
No of Dependents = a randomly generated integer value between 0 and 7;
Income = a randomly generated integer value between 30 and 100;
Job Grade = a randomly generated integer value between 1 and 4;

} // end of if(City = Mel)
else if (City = Syd){

No of Dependents = a randomly generated integer value between 0 and 7;
if (No of Dependents <= 2)
Credit Risk = No;

else
Credit Risk = Yes;

Income = a randomly generated integer value between 30 and 100;
Job Grade = a randomly generated integer value between 1 and 4;

}\\ end of else if (city = Syd)
} \\ end of if(House Rent > 300)

6.7.2 Properties of Customer Status (CS) Data Set

Each record of the Customer Status (CS) data set has been created as follows.

113

Country of Origin = A value is generated using the following
probability distribution:
40% probability for USA,
40% probability for England,
20% probability for Australia;

if (Country of Origin = USA or England){

Profession = A value is generated using the following
probability distribution:
95% probability for Scientist,
3% probability for Academic,
2% probability for Engineer;

Car Make = A value is generated using the following
probability distribution:
40% probability for Toyota,
40% probability for Ford,
20% probability for Nissan;

if(Country of Origin = USA) {
if (Car Make = Toyota or Ford)

Status = Good;
else

Status = Bad;
} // end of if (Country of Origin = USA)

if(Country of Origin = England){
if(Car Make = Nissan or Ford)

Status = Good;
else

Status = Bad;
} // end of if(Country of Origin = England)

} // end of if (Country of Origin = USA or England)

else if (Country of Origin = Australia){

Profession = A value is generated using following
probability distribution:
40% probability for Engineer,
30% probability for Academic,

114

30% probability for Scientist;

if (Profession = Engineer){
Car Make = A value is generated using the following

probability distribution.
50% probability for Toyota,
50% probability for Holden;

Status = Bad;
}

else if (Profession = Scientist or Academic){

Car Make = A value is generated with 25% probability for each of the four
possible values (Toyota, Nissan, Ford, Holden);

if (Profession = Scientist)
Status = Bad;

else
Status = Good;

}
} // end of else if (Country of Origin = Australia)

Parents’ Country = A value is randomly generated from the domain with
each value having equal probability;

Favorite City = A value is randomly generated from the domain with
each value having equal probability;

6.8 Conclusion

In this chapter we have presented a categorical attribute values clustering technique

called DETECTIVE. Another technique for clustering records of a data set having categori-

cal attributes called EX-DETECTIVE has also been presented. Finally, a categorical values

perturbation technique called CAPT, that makes use of DETECTIVE, has been presented.

All experimental results presented are very encouraging and suggest that CAPT perturbs

the categorical values for preserving privacy while maintaining the original data patterns

to a reasonable level. CAPT can be applied along with existing perturbation techniques

proposed in the previous chapters in order to perturb all non-class (both categorical and

115

numerical) attributes and class attribute of a data set for higher security.

In the next chapter we present a framework for perturbing all non-class (both numerical

and categorical) and class attributes altogether. We also present an extended framework

that incorporates GADP or EGADP in order to preserve the existing correlations, as well,

among the numerical attributes.

116

Chapter 7

The Framework and Experimental

Results

Each of the techniques presented so far adds noise either to a class attribute, non-

class numerical attribute or non-class categorical attribute. We now present a Framework

that combines these techniques for adding noise to all the attributes of a data set. The

Framework adds noise in such a way that the patterns discovered by the decision tree built

on an original data set are preserved. Additionally, our Framework can be extended so as to

preserve the correlation among the attributes as well. This extension makes the Framework

applicable to a wider range of data sets, both those to be used for classification and those

used for statistical analysis. Our experimental results, presented in Section 7.3, indicate

that the patterns are very well preserved.

7.1 The Framework

The following is a high level pseudocode of our Framework.

For each leaf, DO:

Step 1: Add noise to Leaf Influential Attributes (LINFAs) of the original records

belonging to the leaf by Leaf Influential Attribute Perturbation Technique (LINFAPT).

Thereby produce a set of perturbed records ps1.

Step 2: Add noise to Leaf Innocent Attributes (LINNAs) of the original records be-

longing to the leaf by Leaf Innocent Attribute Perturbation Technique (LINNAPT). Thus

produce another set of perturbed records ps2.

117

Step 3: Add noise to the categorical attributes of the original records belonging to

the leaf by CAPT. Thereby produce another set of perturbed records ps3.

Step 4: If the leaf is heterogeneous add noise to the class attribute, of the origi-

nal records belonging to the leaf, by Random Perturbation Technique (RPT). In this way

another set of perturbed records ps4 are produced.

Step 5: Produce the combined perturbed records containing all perturbed attributes

from ps1, ps2, ps3 and ps4.

END DO

Each of the steps (from Step 1 to Step 4) takes a set of unperturbed records and

produces a set of perturbed records where values belonging to one or more attributes are

perturbed. For example, Step 1 produces a set of perturbed records ps1 where the LINNAs

are perturbed. If a data set does not have any non-class numerical attributes or if a leaf

does not have any LINNAs then Step 1 produces a set of records which is the same as the

original set of records.

Step 3 adds noise to non-class categorical attributes by CAPT. When adding noise to

a categorical attribute it produces a decision tree, on the original data set, that considers

the categorical attribute as the class attribute. CAPT then explores the similarities among

the categorical values using the decision tree. These similarities are used for adding noise

to the categorical attributes of the records belonging to a leaf.

Finally, Step 5 produces a set of combined perturbed records pc, where |pc| = |psi|, 1 ≤
i ≤ 4, in such a way so that only the perturbed attributes from each psi are included into

pc. The Framework repeats the process for all leaves and thereby perturbs the whole data

set.

7.2 The Extended Framework

We now propose an extension of our Framework in order to maintain statistical pa-

rameters as well. We again build a decision tree on the original data set and add noise to

the records belonging to each leaf separately. Our Extended Framework has the following

steps. Note that steps 1 and 2 in the original framework are replaced by a combined step

while the remaining 3 steps are unchanged.

For each leaf, DO:

Step 1: Add noise to Leaf Influential Attributes (LINFAs) and Leaf Innocent Attributes

118

(LINNAs) of the original records belonging to the leaf using either GADP, or CGADP or

EGADP technique [73, 92, 74], where the domain of each LINFA is bounded by the range

defined by the conditional values of the LINFA in the decision tree. A set of perturbed

records ps1 is thereby produced.

Step 2: Add noise to the categorical attributes, of the original records belonging to

the leaf, by CAPT. Thereby produce a set of perturbed records ps2.

Step 3: If the leaf is heterogeneous - add noise to the class attribute, of the original

records belonging to the leaf, by Random Perturbation Technique (RPT). Thus produce a

set of perturbed records ps3.

Step 4: Produce the combined perturbed records containing all perturbed attributes

from ps1, ps2 and ps3.

END DO

In Step 1 we consider the collection of records that belong to the leaf under consid-

eration to be a data set in its own right. The domains of LINNAs remain the same as

their domains in the original data set. However, the domains of the LINFAs are defined

by the conditional values for the leaf. Thus, after the perturbation is completed the values

of LINFAs will remain within the range defined by the conditional values. Step 2, Step

3 and Step 4 are straightforward and similar to their corresponding steps in the original

Framework.

The Extended Framework effectively divides the original data set into horizontal seg-

ments (set of records) defined by the leaves of the decision tree built on the data set. The

GADP method is then applied to the horizontal segment defined by each leaf separately and

thereby a set of perturbed horizontal segments are produced. This results in the preservation

of the correlations that exists in the original horizontal segment, in a perturbed horizontal

segment. Moreover, the records of a perturbed horizontal segment are free from any biases

of types A, B, C or D [73] that are discussed in Chapter 3 of this thesis. Such perturbed

horizontal segments cause the whole perturbed data set to have correlations (among the

attributes) similar to the one that the original data set has. Moreover, the perturbed data

set is also free from the above mentioned biases.

The advantage of adding noise leaf by leaf is in the preservation of all the patterns

discovered by the original tree. The trade off that we must bear is in certain decrease of the

security, as an intruder will have tight bounds on the original values in LINFAs. However,

there are no such bounds on LINNAs.

119

7.3 Experiments

We first introduce a few terms that we use throughout this section. The decision

tree obtained from an original training data set is referred to as original tree. The rules

belonging to the original tree are called original rules. Similarly, the decision tree obtained

from a perturbed data set and the rules belonging to the tree are called perturbed tree and

perturbed rules, respectively. The original rule which is the most similar to a perturbed

rule is denoted as the best matching original rule of the particular perturbed rule. Finally,

the weight of a rule is the number of records which it applies to.

We now describe a few parameter values that we use in our experiments. For noise

addition by LINNAPT we use a normal distribution for the noise with mean µ= 0 and

standard deviation σ= 33.33% of the attribute domain size.

Similarly, for noise addition by LINFAPT we use a normal distribution of noise with

mean µ= 0 and standard deviation = 33.33% of the new domain size of the LINFA. For

both LINNAPT and LINFAPT we wrap around the perturbed value if it falls outside the

domain. The domain of a LINFA is determined by the conditional values of the attribute.

Additionally, for noise addition to a non-class categorical attribute by CAPT we use 0.1 as

the user defined probability p for changing the value to one of its similar values.

We carry out experiments on our Framework and Extended Framework in order to

evaluate their effectiveness in maintaining a good data quality in a perturbed data set. We

perturb a data set by the Framework, the Extended Framework and other random noise

addition techniques.

We evaluate the data quality of a perturbed data set through a few quality indicators

such as the similarity of the decision trees obtained from the perturbed and the original

data sets, prediction accuracy of the decision tree obtained from the perturbed data set and

the similarity of the correlation matrices of the original and the perturbed data set. We

explain these indicators one by one as follows.

Similarity of Decision Trees

We compare a perturbed tree to the original tree by evaluating the similarities of the

perturbed rules with the original rules. Based on the degree of similarity of a perturbed

rule and the best matching original rule, the perturbed rules are informally categorized in

four different types, Type A, Type B, Type C and Type D.

120

In what follows, let P, Q, R and S be non-class attributes, and let C be the class

attribute of a data set. Further suppose that P, Q and R are numerical attributes with

domains [1,10]. Let S and C be categorical attributes with domain {s1, s2, s3} and {c1, c2},
respectively. Suppose there are altogether five original rules Ro(1), Ro(2), Ro(3), Ro(4) and

Ro(5) as follows.

P(> 5) and Q(≤ 2) and S(= s1) ⇒ c1,

P(> 5) and Q(≤ 2) and S(= s2) ⇒ c2,

P(> 5) and Q(≤ 2) and S(= s3) ⇒ c1,

P(> 5) and Q(> 2) ⇒ c2, and

P(≤ 5) ⇒ c2.

• Type A: Type A rule is the rule which is exactly the same as the best matching

original rule. For example, a perturbed rule Rp(1): P(> 5) and Q(≤ 2) and S(=

s1) ⇒ c1, is identical to its best matching original rule Ro(1) and therefore, Rp(1) is

defined as Type A.

• Type B: If a perturbed rule differs from its best matching original rule

1) only in conditional values of corresponding numerical attribute/s, or

2) where 2 or more rules that differ in only one attribute can be combined to produce

a rule that differs from some original rule only in combined values. For example, a

perturbed rule Rp(2): P(> 6) and Q(≤ 2) and S(= s1) ⇒ c1, differs from its best

matching original rule Ro(1) only in the conditional value for attribute P. Therefore,

Rp(2) is defined as Type B. Let us give another example of a Type B rule. Let Rp(21):

P(> 6) and Q(> 4) and S(= s1, s2) ⇒ c2 and Rp(22): P(> 6) and Q(> 4) and S(=

s3) ⇒ c2 then the combining Rp(21) and Rp(22) we get P(> 6) and Q(> 4) ⇒ c2

which is a Type B rule since it differs only in conditional values for attribute P and

Q.

• Type C: Type C is a rule that does not involve any Total Innocent Attribute of

an original tree and is not of Type A or Type B. If an attribute is a Leaf Innocent

Attribute for each leaf then we call it Total Innocent Attribute.

• Type D: If a perturbed rule involves at least one Total Innocent Attribute then the

rule is defined as Type D. For example, a perturbed rule Rp(3): P(> 8) and Q(≤

121

2) and R(< 3) ⇒ c1 involves Total Innocent Attribute R and therefore, we denote

Rp(3) as Type D.

We measure the similarity of a perturbed tree Tp(1) with the original tree To by eval-

uating the types of the perturbed rules and their corresponding weights, where the weight

of a rule is the percentage of total records that follow the rule. We illustrate this similarity

measure with an example, where a perturbed tree Tp(1) has Type A rules which apply to

90% of records and Type D rules that apply to the 5% of the records belonging to the per-

turbed data set. Another perturbed tree Tp(2) has Type D rules that apply to 70% of the

records and Type A rules that apply to 5% of the records belonging to the corresponding

perturbed data set. Therefore, we consider that Tp(1) and the original tree are more similar

than the Tp(2) and the original tree.

We classify a perturbed tree in four types; Exactly Same, Very Similar, Similar and

Dissimilar. If a perturbed tree has Type A rules for 100% records then we classify the tree

as Exactly Same. If it has Type A rules for at least 60% records and Type D rules for less

than 5% records, then we consider the tree as Very Similar to the original tree. However, a

perturbed tree is considered as Similar if it has Type A rules for more than 15% records and

Type D rules for less than 5% records. Finally, we consider that a Dissimilar perturbed tree

has Type D rules for more than 10% records and Type A rules for less than 10% records.

Prediction Accuracy of the Decision Tree

We build a classifier from the perturbed tree and apply the classifier on the training and

testing data sets separately. We also build a classifier from the original tree and apply the

classifier on the training and testing data sets. We then compare their accuracies. Ideally,

the accuracy of a perturbed classifier should be as good as the accuracy of the original

classifier in order to demonstrate a good data quality of the perturbed data set. If two

decision trees, obtained from an original training data set and a perturbed data set, are

similar to each other and both trees have similar prediction accuracy on a testing data set

then we consider the underlying data sets as similar. The data quality of a perturbed data

set is considered to be high when the perturbed data set is similar to the original data set.

122

Correlation Matrices

We also evaluate the data quality of a perturbed data set through the correlation

matrices obtained from the original and the perturbed data sets. If these two correlation

matrices are similar then the data quality of the perturbed data set is better in the sense

that it can be used for statistical analysis. By similarity of matrices we mean the values of

corresponding elements are same or close.

We perform the experiments on two data sets; the Adult data set and the Wisconsin

Breast Cancer (WBC) data set [77]. The experiments and the results are presented in the

following subsections.

7.3.1 Experiments on the Adult Data Set

The Adult data set DSo
adult has 32,561 records [77] where each record contains infor-

mation about a person. There are 15 attributes including one class attribute, that has

two categorical values, “>50K” and “<=50K”. The non-class attributes are age, work-

class, fnlwgt, education, education-num, marital-status, occupation, relationship, race, sex,

capital-gain, capital-loss, hours-per-week, and native-country.

We use the minimum and maximum value that appear in the data set as lower and

upper bound of the attribute domain, and we have the following domains.

• workclass = {Private, Self-emp-not-inc, Self-emp-inc, Federal-gov, Local-gov, State-

gov, Without-pay, Never-worked}

• education = {Bachelors, Some-college, 11th, HS-grad, Prof-school, Assoc-acdm, Assoc-

voc, 9th, 7th-8th, 12th, Masters, 1st-4th, 10th, Doctorate, 5th-6th, Preschool}

• marital-status = {Married-civ-spouse, Divorced, Never-married, Separated, Widowed,

Married-spouse-absent, Married-AF-spouse}

• occupation = {Tech-support, Craft-repair, Other-service, Sales, Exec-managerial, Prof-

specialty, Handlers-cleaners, Machine-op-inspct, Adm-clerical, Farming-fishing, Transport-

moving, Priv-house-serv, Protective-serv, Armed-Forces}

• relationship = {Wife, Own-child, Husband, Not-in-family, Other-relative, Unmarried}

• race = {White, Asian-Pac-Islander, Amer-Indian-Eskimo, Other, Black}

123

• sex = {Female, Male}

• native-country = {United-States, Combodia, England, Puerto-Rico, Canada, Ger-

many, Outlying-US(Guam-USVI-etc), India, Japan, Greece, South, China, Cuba,

Iran, Honduras, Philippines, Italy, Poland, Jamaica, Vietnam, Mexico, Portugal, Ire-

land, France, Dominican-Republic, Laos, Ecuador, Taiwan, Haiti, Columbia, Hun-

gary, Guatemala, Nicaragua, Scotland, Thailand, Yugoslavia, El-Salvador, Trinidad

& Tobago, Peru, Hong, Holand-Netherlands}.

In DSo
adult there are 2,399 records having one or more missing values. We delete these

records and produce a data set DSadult having 30,162 records. A decision tree DTadult

is built from DSadult, applying See5 decision tree builder. We then divide DSadult into

two data sets; a training data set DStraining having 25,600 records and a testing data set

DStesting having 4,562 records. DStesting is created by taking 15% of records belonging

to each leaf of DTadult. We build a decision tree DTtraining (shown in Figure 7.1) from

DStraining. We use See5 decision tree builder with the following parameters; Pruning CF

= 25% and Minimum = 200. Pruning CF = 25% is the default value for this option and

a value larger than this would result in less pruning. The option Minimum = 200 specifies

that in order for a node to be split further it must have at least two children with at least

200 recordsin each child.

We maintain the same setting for all decision trees throughout the experiments with

Adult data set.

The mean vector for the numerical attributes of the Adult data set is [38.44, 189669.70,

10.12, 1102.66, 87.39, 40.88] and the correlation matrix is as follows.




1.0 −.075 .046 .082 .060 .104

−.075 1.0 −.043 .001 −.011 −.024

.046 −.043 1.0 .126 .079 .152

.082 .001 .126 1.0 −.032 .082

.060 −.011 .079 −.032 1.0 .049

.104 −.024 .151 .082 .049 1.0




In both the mean vector and the correlation matrix the order of numerical attributes is the

same as the order given above.

124

capital−gain

>50K
(1130/15)

>6849

capital−loss

<=6849

capital−loss

<=1977

>50K
(530/64)

<=50K
(271/114)

>1762

{Divorced, Never−married,
Separated, Widowed,

 Married−spouse−absent}

<=50K
(13216/642)

marital−status

{Married−AF−
spouse}

>50K
(16/7)

 {Married−civ−spouse}

education−num

>12

hours−per−week education−num

<=8<=32 >32

<=50K

(208/83)
>50K

(2511/804)
<=50K

(1254/125) <=35

<=50K
(2216/460)

hours−per−week

<=34

<=50K
(391/68)

>34

occupation

{Armed−
Forces}

<=50K
(0)

{Tech−support
Exec−managerial,
Prof−specialty,
Protective−serv}

>50K
(972/423)

Handlers−cleaners,
Machine−op−inspct,
Adm−clerical,
Farming−fishing,
Transport−moving,
Priv−house−serv}

Sales,
Other−service,

{Craft−repair,

<=50K
(2885/1032)

>1977

<=12

>8

age

>35

Leaf 1

Leaf 2 Leaf 3

Leaf 4 Leaf 5

Leaf 6 Leaf 7 Leaf 8

Leaf 9

Leaf 10

Leaf 11

Leaf 12
Leaf 13

<=1762

Figure 7.1: The decision tree DTtraining obtained from 25,600 records of the training Adult
data set.

Experiments on the Framework

We perturb the Adult data set DStraining by our Framework that incorporates LIN-

FAPT, LINNAPT (introduced in Chapter 5), CAPT (introduced in Chapter 6) and RPT

(introduced in Chapter 4).

All non-class numerical attributes and the class attribute are perturbed. However, for

having a reduced workload we perturb only two categorical attributes workclass and marital-

status by CAPT. We run this experiment 5 times and thereby produce five perturbed data

sets DSFrmwrki, 1 ≤ i ≤ 5. We build the decision tree DTFrmwrki from a perturbed data

set DSFrmwrki, 1 ≤ i ≤ 5.

DTFrmwrk1 and DTFrmwrk2 are presented in the Figure 7.2 and the Figure 7.3. We

measure the similarity of the perturbed tree DTFrmwrk1 with the original tree DTtraining by

evaluating the types of the rules (revealed in the perturbed tree) and their corresponding

weights. For example, DTFrmwrk1 has Type A rules that apply to 89.38% of perturbed

records and Type B rules that apply to the remaining 10.62% of perturbed records. The

tree does not have any “Type D” rules. Similarly, DTFrmwrk2 has Type A rules that apply

125

capital−gain

>50K
(1130/15)

>6849

capital−loss

<=6849

capital−loss

<=1977

>50K
(530/64)

<=50K
(271/114)

>1762

{Divorced, Never−married,
Separated, Widowed,

 Married−spouse−absent}

<=50K

marital−status

{Married−AF−
spouse}

>50K

 {Married−civ−spouse}

education−num

>12

education−num

<=8

<=50K

<=35

<=50K hours−per−week

<=34

<=50K

>34

occupation

{Armed−
Forces}

<=50K
(0)

{Tech−support
Exec−managerial,
Prof−specialty,
Protective−serv}

>50K
(972/423)

Handlers−cleaners,
Machine−op−inspct,
Adm−clerical,
Farming−fishing,
Transport−moving,
Priv−house−serv}

Sales,
Other−service,

{Craft−repair,

<=50K

>1977

<=12

>8

age

>35

Leaf 1

Leaf 2 Leaf 3

Leaf 4 Leaf 5

(13218/646) (20/10)
>50K

Leaf 6

(2720/931)

Leaf 11

Leaf 10

Leaf 9

Leaf 8

Leaf 7

Leaf 12

<=1762

(1251/124)

(2212/459)

(393/68)

(2883/1030)

Figure 7.2: The decision tree obtained from a data set perturbed by the Framework.

Handlers−cleaners,
Machine−op−inspct,

Transport−moving,

capital−gain

>50K
(1130/15)

>6849

capital−loss

<=6849

capital−loss

>50K <=50K

>1762

{Divorced, Never−married,
Separated, Widowed,

 Married−spouse−absent}

<=50K

marital−status

{Married−AF−
spouse}

>50K

 {Married−civ−spouse}

education−num

>12

education−num

<=8

<=50K

<=35

<=50K hours−per−week

<=34

<=50K

>34

occupation

{Armed−
Forces}

<=50K
(0)

{Tech−support
Exec−managerial,
Prof−specialty,
Protective−serv}

>50K
(973/424)

Adm−clerical,
Farming−fishing,

Priv−house−serv}

Sales,
Other−service,

{Craft−repair,

<=50K

>1977

<=12

>8

age

>35

Leaf 1

Leaf 2 Leaf 3

Leaf 4 Leaf 5

>50K

Leaf 6

(2720/932)

Leaf 11

Leaf 10

Leaf 9

Leaf 8

Leaf 7

Leaf 12

<=1762

(1260/126)

(2207/454)

(2887/1033)

<=1988

(531/64) (270/113)

(13212/647) (18/8)

(392/68)

Figure 7.3: The decision tree obtained from a data set perturbed by the Framework.

126

to 86.25% of perturbed records and Type B rules that apply to the remaining 13.75% of

perturbed records. DTFrmwrk2 also does not have any Type D rules. Therefore, both of

these perturbed trees are extremely similar to the original tree DTtraining.

Prediction accuracies of these perturbed trees on the training, perturbed and testing

data sets are also very similar to the accuracies of DTtraining. A reader may want to

study Table 7.1 for more information. In Table 7.1 names of various classifiers/decision

trees are given in the first column. The second, third and fourth columns present the

prediction accuracies of a classifier when it is applied on the underlying perturbed data

set, original training data set DStraining, and testing data set DStesting, respectively. Since

DTFrmwrk1 and DTFrmwrk2 are very similar to the DTtraining, and the prediction accuracies

of DTFrmwrk1 and DTFrmwrk2 are also very similar to the accuracies of DTtraining - we

consider that DSFrmwrk1 and DSFrmwrk2 are also very similar to the DStraining. Therefore,

each of these two perturbed data sets maintains a very high data quality.

We study all five perturbed data sets and conclude that all of them maintain very high

data quality in terms of similarities of decision trees and their accuracies. In fact, four out of

five perturbed trees have either Type A or Type B rules that apply on 100% of the perturbed

records. The fifth decision tree has 70% perturbed records having either Type A or Type B

rules. None of the five trees have any Type D rules. Prediction accuracies of all these trees

are also very similar to DTtraining. For all five perturbed data sets the difference between

prediction accuracy of DTtraining (on DStraining) and prediction accuracy of DTFrmwrki (on

DSFrmwrki), is less than 0.7% of the total number of records. This difference is less than

0.2% for four out of five trees.

Our Framework is tailored for preserving the patterns in a perturbed data set. It does

not cater for preserving correlations among numerical attributes. However, we explore the

correlations among the numerical attributes of the perturbed data sets. We present a few

correlation matrices belonging to the data sets perturbed by the Framework as follows.

The mean vector for the numerical attributes of a perturbed data set is [52.13, 716405.71,

9.54, 5644.23, 974.16, 51.81] and the correlation matrix is as follows.

127




1.0 .01 .001 .011 .003 .03

.01 1.0 −.008 −.004 −.004 −.008

.001 −.008 1.0 −.017 −.017 .069

.011 −.004 −.017 1.0 .295 −.009

.003 −.004 −.017 .295 1.0 −.009

.03 −.008 .069 −.009 −.009 1.0




The mean vector for the numerical attributes of another perturbed data set is [52.31,

717700.64, 9.53, 5551.89, 984.06, 51.82] and the correlation matrix is as follows.



1.0 .01 −.012 .012 .009 .035

.01 1.0 −.007 .001 −.001 .002

−.012 −.007 1.0 −.009 −.005 .077

.012 .001 −.009 1.0 .302 −.007

.009 −.001 −.005 .302 1.0 −.001

.035 .002 .077 −.007 −.001 1.0




The correlation matrices presented here show that the original mean vector and cor-

relations are not preserved in the perturbed data sets. The correlation matrices obtained

from other data sets perturbed by the Framework are also similar results.

Experiments on a Random Framework

We first introduce a technique called Random Categorical that perturbs the categorical

attributes. This technique does not cater for preserving patterns. A categorical value is

converted to another value belonging to the domain of the attribute, with a user defined

probability p. In our experiments we use p = 0.1. Random Categorical technique does not

use the similarities among the categorical value. A value has equal probability for being

perturbed as any other values. Random Categorical perturbs all values of a categorical

attribute with the same probability p.

We combine RNAT (introduced in Chapter 5), Random Categorical and ALPT (intro-

duced in Chapter 4) to form a Random Framework for perturbing the numerical, categorical

128

and class attributes, respectively. The Random Framework is not tailored for preserving

pattern of a data set. We use it in order to evaluate the results that we obtain in our

experiments on the Framework. We perturb only two categorical attributes, workclass and

marital status, in order to make this experiment analogous with our experiments on the

Framework.

We run this experiment 5 times and thereby produce 5 perturbed data sets DSRandomi,

1 ≤ i ≤ 5. We build the decision tree DTRandomi from a perturbed data set DSRandomi,

1 ≤ i ≤ 5. DTRandom1 and DTRandom2 are presented in the Figure 7.4 and Figure 7.5,

respectively. We again measure the similarity of the perturbed tree DTRandom1 with the

original tree DTtraining by evaluating the types of rules (revealed in the perturbed tree) and

their corresponding weights. DTRandom1 has Type D rules that apply on 100% records in

DSRandom1. Similarly, DTRandom2 also has Type D rules that apply on 100% perturbed

records. Therefore, DTRandom1 and DTRandom2 are very dissimilar to DTtraining.

relationship

{Wife, Own−child, Not−in−family,
Other−relative, Unmarried}

educateion

{Bachelors, Prof−school,
Masters, Doctorate}

{Some−college, 11th, HS−grad,
Assoc−acdm, Assoc−voc, 9th,
7th−8th, 12th, 1st−4th, 10th,
5th−6th, Preschool}

<=50K

(15030/5220)

<=50K

Leaf 1

Leaf 2 Leaf 3

{Husband}

>50K
(3155/1280)

(7415/3205)

Figure 7.4: The decision tree obtained from a data set perturbed by the Random Framework.

Prediction accuracies of these trees on the underlying perturbed data sets they have

been obtained from are also very poor. See Table 7.1 for more information. Moreover,

the prediction accuracies of the trees on the original training data set and the testing data

set are also lower than the accuracies of the original tree and the trees obtained from

data sets perturbed by the Framework. It appears that if all categorical attributes were

perturbed the accuracies of the perturbed trees DTRandom1 and DTRandom2 could be a lot

129

Other−relative, Unmarried}

Leaf 1

{Own−child, Not−in−family,

(13851/4624)

Farming−fishing,
Priv−house−serv}

Adm−clerical,
Prof−specialty,
Exec−managerial,

occupation

{Wife}

relationship

{Craft−repair,

Other−service,
Sales,
Handlers−cleaners,
Machine−op−inspct,
Transport−moving,
Protective−serv}

<=50K

Leaf 2 Leaf 3 Leaf 3

Forces}
{Armed−

{Tech−suport,

(0)

<=50K
(816/371)

>50K
(363/127)

{Bachelors,

Masters,
Prof−school,

Doctorate}

educateion

{Some−college, 11th, HS−grad,
Assoc−acdm, Assoc−voc, 9th,
7th−8th, 12th, 1st−4th,10th,
5th−6th, Preschool}

{Husband}

>50K <=50K

(3164/1282) (7406/3228)

Leaf 4 Leaf 5

<=50K

Figure 7.5: The decision tree obtained from a data set perturbed by the Random Framework.

worse. The trees mostly use the unperturbed categorical attributes to extract patterns (see

Figure 7.4 and Figure 7.5). These may be secondary patterns, which are less prominent

than the original patterns extracted by the original tree. These patterns happen to have

reasonable prediction accuracies on original training and testing data set. This means that

these patterns also exist in the original data sets. However, we note that the prediction

accuracies of the perturbed trees on the underlying data sets are very poor. These indicate

that the underlying data set is very ”noisy” while at the same time it does not contain

strong patterns. As we shall see in the experiments on the next data set that this is not

always the case.

We study all five perturbed data sets and their decision trees. We find that all of

the decision trees have Type D rules that apply on 100% records of the perturbed data

sets. This shows a significant dissimilarity between a perturbed tree and the original tree

suggesting a drop in data quality. Additionally, the correlation matrices of the perturbed

data sets are also very different from the correlation matrix of the original training data

set as expected. The mean vector and correlation matrix of a perturbed data set is shown

below.

Mean vector: [55.32, 750087.74, 8.41, 50351.19, 2183.07, 50.06]

Correlation matrix:

130




1.0 0.0 −.004 0.0 .010 −.004

0.0 1.0 .002 −.001 .004 0.0

−.004 .002 1.0 −.007 −.003 .001

0.0 −.001 −.007 1.0 −.006 −.014

.011 .004 −.003 −.006 1.0 .002

−.005 0.0 .002 −.014 .002 1.0




Experiments on the Extended Framework

We use GADP in our experiments on the Extended Framework. We apply the Extended

Framework on DStraining and produce a perturbed data set. We run this experiments 5

times and produce 5 perturbed data sets DSExtndFrmi, 1 ≤ i ≤ 5. We build the decision

tree DTExtndFrmi from a perturbed data set DSExtndFrmi.

capital−gain

>50K
(1133/15)

capital−loss

capital−loss

<=1977

>50K
(530/64)

<=50K
(271/114)

>1285

>1977
Leaf 1

<=1285

education−num

>12

{Married−AF−
spouse}

(0)
<=50K

spouse−absent}

{Divorced,
Never−married
Separated,
Widowed

<=50K
(1286/61)

Leaf 2 Leaf 3

 Married−

 {Married−
civ−spouse}

marital−status

hours−per−week

<=32 >32

(209/83)
<=50K

(2508/805)
>50K

marital−status
{Divorced,
Never−married
Separated,
Widowed
 Married−
spouse−absent}

<=50K
(11936/588)

{Married−AF−
spouse}

>50K
(15/6)

 {Married−
civ−spouse}

Leaf 4

education−num

(1259/125)
<=50K

<=8

hours−per−week

>8

<=30

<=50K
(601/114)

age

>30

<=35 >35

age

>48<=48
<=50K

(1982/403)

<=50K
(2635/948) (1235/597)

>50K

<=12

Leaf 10Leaf 8

Leaf 9

Leaf 7Leaf 6Leaf 5

Leaf 11

Leaf 12

Leaf 13 Leaf 14

>3837 <=3837

Figure 7.6: The decision tree obtained from a data set perturbed by the Extended Frame-
work.

131

capital−gain

>50K
(1134/15)

capital−loss

capital−loss

<=1977

>50K
(530/64)

<=50K
(271/114)

>1185

>1977
Leaf 1

Leaf 2 Leaf 3

>3726 <=3726

education−num

<=12

<=1185

Leaf 4

<=50K
(19694/

2825)

<=12

marital−status

{Married−AF−
spouse}

<=50K
(0)

 {Married−
civ−spouse}

>50K

(2721/932)

Leaf 5 Leaf 6

{Divorced,
Never−married

<=50K

Separated,
Widowed

spouse−absent}
 Married−

(1250/57)

Leaf 7

Figure 7.7: The decision tree obtained from a data set perturbed by the Extended Frame-
work.

DTExtndFrm1 and DTExtndFrm2 are presented in the Figure 7.6 and Figure 7.7, respec-

tively. DTExtndFrm1 has Type B rules for the records belonging to Leaf 1, through to Leaf

9 of the perturbed tree. Combined logic rules for Leaf 4 and Leaf 9 correspond to the logic

rule of Leaf 5 of DTtraining. Thus they fall in the category Type B (see Figure 7.1 and

Figure 7.6). Similarly the combined logic rules for Leaf 5 and Leaf 8 jointly correspond to

the logic rule for Leaf 4 of DTtraining and also fall in the category Type B. Therefore, all

together DTExtndFrm1 has Type B logic rules that apply on 74.79% of records belonging to

DSExtndFrm1. Other perturbed logic rules are of Type C. Therefore, DTExtndFrm1 is very

similar to DTtraining.

DTExtndFrm2 has Type B rules that apply on 18.20% of perturbed records. Other

rules are also similar to the original rules and thus belong to Type C. For example,

the logic rule for Leaf 4 of DTExtndFrm2 (having 77% of the total records) corresponds

to the original combined rules for the leaves from Leaf 8 to Leaf 13. The logic rule

for Leaf 4 of DTExtndFrm2 belongs to Type C. Moreover, there is no Type D rules in

DTExtndFrm2. Therefore, DTExtndFrm2 is also similar to DTtraining. Just like DTExtndFrm1

and DTExtndFrm2 other perturbed trees (DTExtndFrm3, DTExtndFrm4 and DTExtndFrm5)

are also similar to DTtraining.

132

The similarity between DTtraining and the tree obtained from a data set perturbed by

Extended Framework is much higher than the similarity between DTtraining and the tree

obtained from a data set perturbed by Random Framework. However, similarity between

DTtraining and the tree obtained from a data set perturbed by Extended Framework is lower

than the similarity between DTtraining and the tree obtained from a data set perturbed

by Framework. Therefore, we remark that although the Extended Framework produces

perturbed data sets having high quality, the quality is not as high as the quality of the data

sets produced by the Framework.

The prediction accuracies of DTExtndFrm1 and DTExtndFrm2 are higher than DTRandom1

and DTRandom2. However, they are slightly lower than the accuracies of DTFrmwork1 and

DTFrmwrk2. See Table 7.1 for more information. For all five perturbed data sets the differ-

ence between prediction accuracy of DTtraining (on DStraining) and prediction accuracy of

DTExtndFrmi (on DSExtndFrmi), is less than 0.3% of the total number of records.

The Extended Framework is tailored for preserving patterns and correlations among

numerical attributes. To show that we consider the correlation matrices for the numerical

attributes of the perturbed data sets as follows, for each of the five perturbed data sets.

1) For DSExtndFrm1:

Mean vector: [32.76, 195740.46, 9.64, 1538.99, 146.81, 40.08]

Correlation matrix:



1.0 −.082 .079 .137 .109 .165

−.082 1.0 −.043 .026 .009 −.005

.079 −.043 1.0 .148 .060 .144

.137 .026 .048 1.0 −.075 .142

.109 .009 .060 −.075 1.0 .039

.165 −.005 .144 −.142 .039 1.0




2) For DSExtndFrm2:

Mean vector: [38.72, 194131.30, 9.70, 1456.10, 148.43, 40.64]

Correlation matrix:

133




1.0 −.059 −.002 .016 .202 .085

−.060 1.0 −.046 0 −.008 .004

−.002 −.046 1.0 .125 .062 .160

.016 0 .125 1.0 −.076 .088

.202 −.008 .062 −.076 1.0 .032

.085 .004 .160 .088 .032 1.0




3) For DSExtndFrm3:

Mean vector: [35.23, 192430.78, 9.72, 1580.73, 145.91, 40.51]

Correlation matrix:



1.0 −.074 .155 .034 .003 .105

−.074 1.0 −.071 0 −.045 −.018

.154 −.071 1.0 .124 .068 .134

.034 0 .124 1.0 −.007 .096

.003 −.045 .068 −.007 1.0 .029

.105 −.018 .134 .096 .029 1.0




4) For DSExtndFrm4:

Mean vector: [43.73, 186317.97, 9.75, 1553.85, 146.33, 41.25]

Correlation matrix:



1.0 −.061 −.020 .052 −.133 −.042

−.061 1.0 −.031 .013 .002 −.016

−.020 −.031 1.0 .150 .038 .165

.052 .013 .150 1.0 −.078 .070

−.133 .002 .038 −.078 1.0 .042

−.042 −.016 .165 .070 .042 1.0




134

5) For DSExtndFrm5:

Mean vector: [36.84, 195808.26, 9.70, 1517.38, 145.99, 40.46]

Correlation matrix:



1.0 −.070 .043 .245 .174 .186

−.070 1.0 −.072 −.011 −.011 −.023

.043 −.072 1.0 .128 .051 .155

.245 −.011 .128 1.0 −.076 .077

.174 −.011 .051 −.076 1.0 .065

.186 −.023 .155 .077 .065 1.0




For convenience of the reader we repeat the mean vector and correlation matrix from

the original training set DTtraining as follows.

Mean vector: [38.44, 189669.70, 10.12, 1102.66, 87.39, 40.88]

Correlation Matrix:




1.0 −.075 .046 .082 .060 .104

−.075 1.0 −.043 .001 −.011 −.024

.046 −.043 1.0 .126 .079 .152

.082 .001 .126 1.0 −.032 .082

.060 −.011 .079 −.032 1.0 .049

.104 −.024 .151 .082 .049 1.0




We compare the above correlation matrices with the correlation matrix obtained from

DTtraining. These experimental results show that the original correlations are not com-

pletely preserved in the data sets perturbed by the Extended Framework. However, they

are significantly better preserved than in the data sets perturbed by the Framework. We

invite the reader to verify this by inspecting the matrices.

We note that the GADP technique may not preserve the original correlations very

well if the data set does not have a multivariate normal distribution [92]. Moreover, for a

small size data set the technique may not also be very suitable [74]. Recall that CGADP or

EGADP are improved are improved version of GADP that are suitable for non-multivariate

and small size data sets, respectively. The Adult data set does not have a multivariate

135

normal distribution. Besides, the number of records belonging to a leaf is very small.

Therefore, CGADP or EGADP can be used instead.

Experiments on Random Extended Framework (REF)

We introduce Random Extended Framework (REF) and compare it with our Extended

Framework. REF applies GADP on all records at a time - rather than on the records

belonging to a leaf separately. This technique does not preserve the range of an attribute

for the records belonging to a leaf.

Random Extended Framework also incorporates Random Categorical technique that

was used in Random Framework. We perturb two categorical attributes; the workclass and

the marital-status. REF also makes use of ALPT technique to perturb the class attribute.

Other−relative, Unmarried}

Leaf 1

{Own−child, Not−in−family,

(13851/4648)

relationship

<=50K <=30 >30

<=50K
(859/366)

>50K
(320/135)

age

{Wife}
{Husband}

{Bachelors,
Prof−school,
Masters,
Doctorate}

>50K

(3155/1313)

Leaf 4

11th, HS−grad,
Assoc−acdm,
Assoc−voc,
9th, 7th−8th,12th,
1st−4th,10th,
5th−6th, Preschool}

<=50K

(5402/2200)

Leaf 5

educateion

age

{Some−college}

<=36 >36

(205/80)

>50K

(1808/837)

<=50K
Leaf 2 Leaf 3

Leaf 6 Leaf 7

Figure 7.8: The decision tree obtained from a data set perturbed by Random Extended
Framework.

We apply REF on DStraining and produce a perturbed data set. We run this exper-

iment 5 times and produce 5 perturbed data sets DSRandomExti, 1 ≤ i ≤ 5. We build the

decision tree DTRandomExti from a perturbed data set DSRandomExti. DTRandomExt1 and

DTRandomExt2 are presented in Figure 7.8 and Figure 7.9. None of these perturbed trees

has Type A or Type B rules. All of them have Type D rules that apply on 100% perturbed

records. Therefore, the perturbed trees are significantly different from DTtraining suggesting

a noteworthy quality drop in the perturbed data sets.

Prediction accuracies of the perturbed trees are also worse than the accuracies of the

trees obtained from data sets perturbed by Extended Framework or Framework. See Ta-

ble 7.1 for further information. The perturbed trees also have very high inaccuracies on

136

Other−relative, Unmarried}

Leaf 1

{Own−child, Not−in−family,

(13851/4607)

relationship

<=50K

{Wife}
{Husband}

occupation

{Armed−
 Forces}

<=50K
(0)

{Tech−support,
Craft−repair,
Exec−managerial,
Prof−specialty}

Handlers−cleaners,
Sales,

{Other−service,

Machine−opinspt,
Adm−clerical,
Farming−fishing,
Transport−moving
Priv−house−serv,
Protective−serv}

>50K

Leaf 2

Leaf 3
<=50K

Leaf 4

(528/221)

(651/260)

age

(1101/450)
>50K educateion

{Bachelors,
Prof−school,
Masters,
Doctorate}

{Some−college.
11th, HS−grad,
Assoc−acdm,
Assoc−voc, 9th,
7th−8th,12th,
1st−4th, 10th,
5th−6th, Preschool}

>50K
(2652/1148)

(6817/2873)
<=50K

>44 <=44

Leaf 5

Leaf 6

Leaf 7

Figure 7.9: The decision tree obtained from a data set perturbed by Random Extended
Framework.

the underlying data sets. For all five perturbed data sets the difference between predic-

tion accuracy of DTtraining (on DStraining) and prediction accuracy of DTRandomExti (on

DSRandomExti) is less than 22.43% of the total number of records. Recall that the same

difference for DTExtndFrmi is less than 0.3% of the total number of records.

Random Extended Framework is supposed to preserve the correlations among numer-

ical attributes. We next inspect the mean vectors and correlation matrices for a couple of

perturbed data sets as follows.

1) For DSRandomExt1:

Mean vector: [35.82, 193373.30, 9.60, 3406.13, 205.45, 40.05]

Correlation matrix:




1.0 −.074 .054 .098 .094 .096

−.074 1.0 −.041 −.012 −.028 −.009

.054 −.041 1.0 .108 .045 .147

.098 −.012 .109 1.0 −.040 .051

.094 −.028 .045 −.040 1.0 .038

.096 −.009 .147 .051 .038 1.0




137

2) For DSRandomExt2:

Mean vector: [38.80, 190019.02, 9.63, 3505.15, 206.79, 40.36]

Correlation matrix:




1.0 −.063 .026 .015 −.011 .082

−.063 1.0 −.047 −.016 0 −.049

.026 −.047 1.0 .112 .066 .148

.015 −.016 .112 1.0 −.024 .077

−.011 0 .066 −.024 1.0 .046

.082 −.049 .148 .077 .046 1.0




Correlation matrices for other perturbed data sets are also similar to those presented

here. It appears that the correlations are better preserved in these data sets than in the data

sets perturbed by any other method, which is not surprising considering that GADP here

operates on the whole data set rather than each leaf separately as in Extended Framework.

7.3.2 Experiments on Wisconsin Breast Cancer Data Set

We now run the experiments on Wisconsin Breast Cancer (WBC) data set, which is

available from [77]. The data set has all together 11 attributes where the class attribute is

categorical. The domain of the class attribute is {2,4} where 2 stands for benign and 4 rep-

resents malignant. Out of the 10 non-class attributes the 1st one is Sample Code Number,

which is the id number of each record and therefore it is removed before a release of the

data set. The other non-class attributes are Clump Thickness, Uniformity of Cell Size, Uni-

formity of Cell Shape, Marginal Adhesion, Single Epithelial Cell Size, Bare Nuclei, Bland

Chromatin, Normal Nucleoli and Mitoses. All these non-class attributes in WBC data set

are numerical and each of them has a domain [1,10]. There are 699 records out of which 16

records have missing values. We delete these 16 records and thus produce a data set DSWBC

having 683 records. A decision tree DTWBC is built from DSWBC , applying See5 decision

138

tree builder. We then divide DSWBC into two data sets; a training data set DStraining

having 600 records and a testing data set DStesting having 83 records. DStesting is created

by taking approximately 12% of records belonging to each leaf of DTWBC . The remaining

records of DTWBC are used to form DStraining. We build a decision tree DTtraining (shown

in Figure 7.10) from DStraining. We use See5 decision tree builder in its default setting for

all experiments with WBC data set.

The mean vector for the numerical attributes of DTtraining is [4.44, 3.18, 3.24, 2.88,

3.23, 3.6, 3.41, 2.89, 1.63] and the correlation matrix is as follows.



1.0 .63 .64 .49 .52 .61 .56 .53 .36

.63 1.0 .90 .72 .76 .70 .77 .72 .47

.64 .90 1.00 .70 .73 .73 .75 .71 .45

.49 .72 .70 1.00 .59 .68 .69 .62 .42

.52 .76 .73 .59 1.00 .59 .62 .65 .49

.61 .70 .73 .68 .59 1.00 .70 .60 .34

.56 .77 .75 .69 .62 .70 1.00 .68 .35

.53 .72 .71 .62 .65 .60 .68 1.00 .46

.36 .47 .45 .42 .49 .34 .35 .46 1.00




Experiments on Framework

We perturb DStraining by our Framework. Since WBC data set does not have any non-

class categorical attribute our Framework incorporates LINFAPT, LINNAPT, and RPT.

We perturb all numerical attributes and the class attribute. We run this experiment 5 times

and thereby produce five perturbed data sets DSFrmwrki, 1 ≤ i ≤ 5. We build the decision

tree DTFrmwrki from a perturbed data set DSFrmwrki, 1 ≤ i ≤ 5.

DTFrmwrk1 and DTFrmwrk2 are presented in Figure 7.11 and Figure 7.12. We mea-

sure the similarity of the perturbed tree DTFrmwrk1 with the original tree DTtraining by

evaluating the types of the rules (revealed in the perturbed tree) and their corresponding

weights. For example, DTFrmwrk1 has Type A rules that apply to 95.5% of total number of

perturbed records and Type D rules that apply to 2.67% of perturbed records. Similarly,

DTFrmwrk2 has Type A rules that apply to 92.83% of total number of perturbed records

139

Uniformity of
Cell Size

Bare Nuclei

2
(348)

>3

Normal Nucleoli

>2

4
(6)

<=2

Clump Thickness

<=3

(10)
2

>3

Marginal Adhesion

<=3

4
(2)

>3

2
(2)

Uniformity of
Cell Shape

Clump Thickness

<=5

(17/1)
2

>5

4
(3)

Uniformity of
Cell Size

>4

4
(156/2)

<=4

Bare Nuclei

>7

4
(33/1)

<=7

Mitoses

>2

4
(3)

Normal Nucleoli

<=2

4
(4)

<=9

Marginal Adhesion

<=3

2
(11)

>3

Single Epithelial
Cell Size

<=3 >3

4
(3)

2
(2)

<=2
>2

<=2 >2

>9

<=3

Leaf 1

Leaf 2

Leaf 3

Leaf 4 Leaf 5

Leaf 6 Leaf 7
Leaf 8

Leaf 9

Leaf 10

Leaf 11

Leaf 12

Leaf 13 Leaf 14

Figure 7.10: The decision tree obtained from the training WBC data set.

and Type D rules that apply to 0% of perturbed records. Therefore, both of these perturbed

trees are extremely similar to the original tree DTtraining.

Prediction accuracies of these perturbed trees on the training, perturbed and testing

data sets are also similar to the accuracies of DTtraining. A reader may want to study

Table 7.2 for more information. The second, third and fourth columns present the prediction

accuracies of a classifier when it is applied on the underlying perturbed data set on the

original training data set DStraining, and on the testing data set DStesting, respectively.

Since DTFrmwrk1 and DTFrmwrk2 are very similar to the DTtraining, and the prediction

accuracies of DTFrmwrk1 and DTFrmwrk2 are also very similar to the accuracies of DTtraining

- we consider that DSFrmwrk1 and DSFrmwrk2 are also very similar to the DStraining.

Therefore, each of these two perturbed data sets maintains a very high data quality.

We study all five perturbed data sets and conclude that all of them maintain very high

data qualities in terms of similarities of decision trees and their prediction accuracies. All of

the five perturbed trees have Type A rules that apply on more than 90% of the total number

of perturbed records. Four out of the five trees do not have a single record that follows a

140

Uniformity of
Cell Size

Bare Nuclei

2
(348)

>3

Normal Nucleoli

>2

4
(6)

<=2

Clump Thickness

<=3

(10)
2

>3

Uniformity of
Cell Shape

Clump Thickness

<=5

(17/1)
2

>5

4
(3)

Uniformity of
Cell Size

>4

4
(156/2)

<=4

Bare Nuclei

4
(33/1)

<=7

(5)

4
(2)

<=6

2
(11)

Single Epithelial
Cell Size

<=4 >4

4
(3)

2
(2)

<=2
>2

<=2 >2

>4

<=3

Leaf 1

Leaf 2

Leaf 3

Leaf 6
Leaf 8

Leaf 9

Leaf 10

Leaf 11

Leaf 12

Leaf 13 Leaf 14

Uniformity of
Cell Shape

4

<=5

(2)

Leaf 4

2

>5

(2)

Leaf 5

>7

Normal Nucleoli

Mitoses

>9

4

<=9

<=4

Bland Chromatin

>6

Leaf 7

Figure 7.11: The decision tree obtained from a WBC data set perturbed by the Framework.

Type D rule. The fifth tree Type D rules that apply on only 2.67% of the total number

of records. Prediction accuracies of all these trees are also very similar to the accuracy of

DTtraining. For all five perturbed data sets the difference between prediction accuracy of

DTtraining (on DStraining) and prediction accuracy of DTFrmwrki (on DSFrmwrki), is less

than 0.85% of the total number of records.

Our Framework is specifically designed to preserve the patterns in a perturbed data

set. It does not cater for preserving correlations among numerical attributes. A correlation

matrix belonging to a data set perturbed by the Framework are presented as follows.

The mean vector for the numerical attributes of DTFrmwrk1 is [4.87, 3.26, 4.68, 4.75,

4.44, 3.42, 4.63, 4.63, 4.06] and the correlation matrix is as follows.

141

Uniformity of
Cell Size

Bare Nuclei

2
(348)

>3

Normal Nucleoli

<=3

Uniformity of
Cell Shape

Clump Thickness

<=5

(17/1)
2

>5

4
(3)

Uniformity of
Cell Size

>4

4
(156/2)

<=4

Bare Nuclei

4
(33/1)

<=7

<=2
>2

<=2 >2
<=3

Leaf 1

Leaf 2 Leaf 4
Leaf 6

Leaf 7

Leaf 8

Leaf 9

Leaf 10

Mitoses

Leaf 5

4
(6)

>3

Leaf 3

(14/2)
2

Marginal Adhesion

>6 <=6

4
(4) <=2

4
(3)

Normal Nucleoli

>2

>7

>9

2
(14/1)

4

(2)

<=9

Leaf 11

Figure 7.12: The decision tree obtained from a WBC data set perturbed by the Framework.




1.0 .31 .17 .15 .08 .27 .16 .06 .07

.31 1.0 .36 .21 .22 .59 .26 .17 .14

.17 .36 1.00 .11 .09 .33 .10 .05 −.02

.15 .21 .11 1.00 .04 .16 .08 .03 .00

.08 .22 .09 .04 1.00 .13 .07 .06 .02

.27 .59 .33 .16 .13 1.00 .25 .08 .01

.16 .26 .10 .08 .07 .25 1.00 .02 .07

.06 .17 .05 .03 .06 .08 .02 1.00 .05

.07 .14 −.02 .00 .02 .01 .07 .05 1.00




The correlation matrix presented here shows that the original correlations are not

preserved in the perturbed data set, as expected. The correlation matrices obtained from

other data sets perturbed by the Framework are similar to the one presented here.

142

Experiments on Random Framework

Since WBC does not have any non-class categorical attributes we combine RNAT and

ALPT to form a Random Framework for perturbing the attributes of a data set. The

Random Framework is not tailored for preserving patterns of a data set. We use it in order

to evaluate the results that we obtain in our experiments on the Framework.

Marginal Adhesion

(428/161)

> 3

2

<=3

Marginal Adhesion

<= 1

Mitoses

<=8

2
(45/6)

> 1

Normal Nucleoli

>8

Bland Chromatin

<=5

4
(5)

2
(2)

>5

Single Epithelial

<=9

2
(35/4)

4
(2)

>9

Single Epithelial
Cell Size

2
(46/12)

>4 <=4

Normal Nucleoli

>8

2
(12)

<=8

Single Epithelial
Cell Size

>3

4
(7)

<=3

Bare Nuclei

<=5

4
(8/1)

>5

2
(10/2)

Cell Size

>3<=3Leaf 1

Leaf 2

Leaf 3 Leaf 4

Leaf 5 Leaf 6 Leaf 7

Leaf 8

Leaf 9

Leaf 10 Leaf 11

Figure 7.13: The decision tree obtained from a data set perturbed by Random Technique.

We run this experiment 5 times and thereby produce 5 perturbed data sets DSRandomi,

1 ≤ i ≤ 5. We build the decision tree DTRandomi from a perturbed data set DSRandomi,

1 ≤ i ≤ 5. DTRandom1 and DTRandom2 are presented in Figure 7.13 and Figure 7.14,

respectively. We again measure the similarity of the perturbed tree DTRandom1 with the

original tree DTtraining by evaluating the types of rules (revealed in the perturbed tree) and

their corresponding weights.

DTRandom1 has Type C rules that apply on 100% records in DSRandom1. DTRandom1

does not have any Type A or Type B rules that apply on any record of DSRandom1.

DTRandom2 has Type D rules that apply on 100% perturbed records. Therefore, DTRandom1

143

Bland Chromatin

<=8

2
(495/161)

>8

Marginal Adhesion

<=6

2
(12)

>6

Clump Thickness

<=6

2
(9/1)

>6

4
(7/1)

Mitoses

<=2 >2

Clump Thickness

Single Epithelial
Cell Size

>5

4
(6)

>8 <=8

Mitoses

<=7

4
(21/6)

>7

2
(8/2)

<=5

Marginal Adhesion

>9

2
(5)

<=9

Bland Chromatin

<=9

Mitoses

<=7 >7

4
(10/3)

2
(8/1)

>9

Single Epithelial
Cell Size

>2

2
(4)

<=2

Clump Thickness

<=2

2
(8/2)

>2

4
(7)

Leaf 3 Leaf 4
Leaf 5

Leaf 6 Leaf 7

Leaf 9 Leaf 10
Leaf 11

Leaf 12 Leaf 13

Leaf 1

Leaf 2

Leaf 8

Figure 7.14: The decision tree obtained from another data set perturbed by Random Tech-
nique.

and DTRandom2 are considered very dissimilar to DTtraining.

Prediction accuracy of these trees on the underlying perturbed data sets are also very

poor. See Table 7.2 for more information. Moreover, the prediction accuracy of the trees

on the original training data set and the testing data set are also very poor. They are

significantly worse than the accuracies of the trees obtained from data sets perturbed by

Framework.

We study all five perturbed data sets and the trees obtained from them. We find that

all of the decision trees have Type C and/or Type D rules that apply on 100% records of

the perturbed data sets. Two out of five trees have Type D rules that apply on more than

80% of the records. One of these five trees has only a single leaf and therefore, does not

extract any pattern. There are altogether two trees having three or less number of leaves.

Additionally, there is a tree having 22 number of leaves. Above study indicates a significant

dissimilarity between the perturbed trees and the original tree suggesting a huge drop in

data quality. Additionally, the correlation matrices of the perturbed data sets are also very

different from the correlation matrix of the original training data set. Correlations among

the attributes are completely lost in the perturbed data sets.

144

Experiments on the Extended Framework

We use GADP in our experiments on the Extended Framework. We apply Extended

Framework on DStraining and produce a perturbed data set. We run this experiments 5

times and produce 5 perturbed data sets DSExtndFrmi, 1 ≤ i ≤ 5. We build the decision

tree DTExtndFrmi from a perturbed data set DSExtndFrmi.

Clump Thickness

Bare Nuclei

Uniformity of
Cell Shape

<=2

Bare Nuclei

<=1

2
(364/1)

>1

<=3

2
(11)

>3

4
(11/2)

>2

>3

4
(184/6)

Mitoses

(16)
4 Marginal Adhesion

2
(10)

4
(4)

<=3

<=2>2

<=3 >3

Leaf 1

Leaf 2 Leaf 3

Leaf 4

Leaf 5

Leaf 6 Leaf 7

Figure 7.15: The decision tree obtained from a data set perturbed by the Extended Frame-
work.

DTExtndFrm1 and DTExtndFrm2 are presented in Figure 7.15 and Figure 7.16, respec-

tively. We study all five trees obtained from the data sets perturbed by Extended Framework.

None of them has a Type A and a Type D rule. One of them has a Type B rule that applies

on 26% records. Most of the trees have Type C rules that apply on 100% records. As a

result of the above study we do not consider the trees similar to DTtraining. Therefore,

patterns are better preserved in the data sets perturbed by the Framework than in the data

sets perturbed by the Extended Framework. However, the prediction accuracy of the trees

perturbed by Extended Framework are high. See Table 7.2 for a comparison of the accuracy

of these trees to the accuracy of others. All of these perturbed trees also have high accuracy

on their underlying data sets. Therefore, these trees represent the underlying data sets well.

The Extended Framework is tailored for preserving patterns and correlations among

numerical attributes. We compare the correlation matrices of data sets perturbed by the

145

Clump Thickness

Uniformity of
Cell Shape

<=2

Bare Nuclei

<=1

2

>1

<=5

2

>5

4Leaf 1

Leaf 2 Leaf 3

(343)

(11)(34/1)

Uniformity of
Cell Size

>2

4

(156/2)

Bare Nuclei

2
(11)

Uniformity of
Cell Size

4
(43/1)

>3

2

(2)

>4 <=4

<=2 >2

<=3

Leaf 4

Leaf 5

Leaf 6 Leaf 7

Figure 7.16: The decision tree obtained from a data set perturbed by the Extended Frame-
work.

Extended Framework to the correlation matrix obtained from DTtraining. In general, the

correlations are better preserved in these data sets than in the data sets perturbed by the

Framework. The possible reasons include small number of records in a leaf and non multi-

variate normal distribution of the data set. Correlation matrices of a couple of perturbed

data sets are presented as follows.

1) For DSExtndFrm1:

Mean vector: [2.94, 2.92, 2.98, 2.85, 2.77, 3.21, 3.13, 2.53, 1.53]

Correlation matrix:

146




1.0 .70 .71 .62 .58 .70 .62 .64 .40

.70 1.0 .91 .85 .76 .72 .80 .74 .54

.71 .91 1.00 .81 .72 .78 .80 .69 .47

.62 .85 .81 1.00 .69 .73 .77 .68 .45

.58 .76 .72 .69 1.00 .67 .60 .75 .41

.70 .72 .78 .73 .67 1.00 .74 .69 .29

.62 .80 .80 .77 .60 .74 1.00 .62 .38

.64 .74 .69 .68 .75 .69 .62 1.00 .53

.40 .54 .47 .45 .41 .29 .38 .53 1.00




2) For DSExtndFrm2:

Mean vector: [4.81, 2.98, 3.09, 2.52, 2.82, 3.17, 3.04, 2.56, 1.62]

Correlation matrix:




1.0 .64 .66 .49 .56 .55 .59 .55 .42

.64 1.0 .91 .66 .82 .61 .76 .70 .62

.66 .91 1.00 .65 .77 .64 .75 .69 .54

.49 .66 .65 1.00 .61 .67 .65 .61 .42

.56 .82 .77 .61 1.00 .57 .70 .67 .64

.55 .61 .64 .67 .57 1.00 .63 .58 .44

.59 .76 .75 .65 .70 .63 1.00 .75 .47

.55 .70 .69 .61 .67 .58 .75 1.00 .58

.42 .62 .54 .42 .64 .44 .47 .58 1.00




Experiments on the Random Extended-Framework

We experiment on Random Extended Framework that applies GADP on all records

at a time - rather than on the records belonging to a leaf separately. Random Extended

Framework does not preserve the range of an attribute for the records belonging to a

147

leaf. Random Extended Framework also incorporates ALPT technique to perturb the class

attribute.

We apply Random Extended Framework on DStraining and produce a perturbed data

set. We run this experiment 5 times and produce 5 perturbed data sets DSRandomExti, 1 ≤
i ≤ 5. We build the decision tree DTRandomExti from a perturbed data set DSRandomExti.

The sizes (number of leaves) of the perturbed trees are 31, 26, 10, 34 and 39. None of the

perturbed WBC trees presented so far has such a big size when the size of DTtraining is

14. Three of the five trees have Type D rules that apply on more than 10% of the records.

None of the perturbed trees have a Type A or Type B rule. For the above reasons these

trees are considered significantly different from DTtraining suggesting a noteworthy quality

drop in the perturbed data sets.

The prediction accuracy of the perturbed trees are also worse than the accuracy of

DTtraining and the trees obtained from the data sets perturbed by the Extended Frame-

work. See Table 7.2 for further details. However, the correlations among the numerical

attributes are preserved reasonably well. The mean vector for the numerical attributes of

DSRandomExt1 is [4.71, 3.77, 3.7, 3.31, 3.25, 4.23, 3.54, 3.41, 1.87] and the correlation matrix

is as follows.




1.0 .68 .71 .56 .58 .66 .61 .58 .39

.68 1.0 .88 .69 .73 .65 .76 .74 .44

.71 .88 1.00 .69 .73 .69 .73 .74 .43

.56 .69 .69 1.00 .62 .67 .71 .65 .40

.58 .73 .73 .62 1.00 .58 .63 .68 .49

.66 .65 .69 .67 .58 1.00 .68 .62 .33

.61 .76 .73 .71 .63 .68 1.00 .69 .38

.58 .74 .74 .65 .68 .62 .69 1.00 .44

.39 .44 .43 .40 .49 .33 .38 .44 1.00




Experiments on GADP without ALPT

Since the Random Extended-Framework results in trees that are very dissimilar to

DTtraining we run another set of experiments where we apply GADP without ALPT. We

148

want to make sure that the quality drop in the perturbed data sets are not only due to

ALPT but also GADP. We perturb DStraining by GADP on the whole data set at a time

instead of on the records belonging to each leaf separately. However, we do not perturb the

class attribute. We run this experiment 5 times and thus produce 5 perturbed data sets

DSGADP i, i ≤ i ≤ 5. We produce 5 decision trees DTGADP i from DSGADP i, 1 ≤ i ≤ 5.

Similar to the results of our experiments on Random Extended Framework, these

decision trees are also very different from DTtraining. All perturbed trees except one have

exceptionally big numbers of leaves. The sizes (number of leaves) of the perturbed trees

are 31, 26, 10, 34 and 37, respectively. Four out of the five trees have Type D rules that

apply on at least 10% of the records. None of the trees has a Type A or Type B rule. The

prediction accuracy of DTGADP 1 and DTGADP 2 on DStraining and DStesting is also lower

than the prediction accuracy of DTExtndFrm1 and DTExtndFrm2. The prediction accuracy of

these trees is presented in Table 7.3. For the above reasons we consider that the perturbed

trees are significantly different from DTtraining suggesting again a noteworthy quality drop

in the perturbed data sets. This result suggests an advantage of our Extended Framework

where we apply GADP on the records belonging to each leaf separately and maintain the

ranges of attribute values within each leaf.

Concluding Comments on Experimental Results

Our experimental results indicate that the Framework is effective in preserving original

patterns and prediction accuracy in perturbed data sets. It does not preserve the original

correlations in perturbed data sets. However, the Extended Framework preserves original

correlations better than the Framework. However, it does not preserve original patterns

and prediction accuracies as much as the Framework does. Both Framework and Extended

Framework preserves data quality better than two other techniques called Random Frame-

work and Random Extended Framework. Application of GADP on the records belonging

to each leaf separately according to our Extended Framework preserves original patterns

better than the use of GADP on the whole data set at a time.

7.4 Conclusion

In this chapter we have introduced a Framework, that incorporates several techniques

to perturb all attributes of a data set. Results of our experiments on Framework are very

149

encouraging. They indicate that the Framework is very effective in preserving original

patterns in a perturbed data set. The trees obtained from data sets perturbed by the

Framework are very similar to the original tree. Moreover, the prediction accuracy of the

classifier obtained from a data set perturbed by the Framework is essentially as high as the

accuracy of the original classifier. These experimental results suggest that the Framework

preserves a high data quality in a perturbed data set, thus allowing quality data mining.

In order to also preserve the original correlations in a perturbed data set we presented

an Extended Framework that incorporates either GADP [73], C-GADP [92] or EGADP [74].

We have presented results on our experiments with the Extended Framework, where we have

used GADP. Our experimental results suggest that the Extended Framework has preserved

original correlations well in a perturbed data set. Extended Framework has preserved the

correlations significantly better than the correlations preserved by other techniques. How-

ever, we believe that the Extended Framework can preserve original correlations even better

if C-GADP or EGADP is used instead of GADP for the following reasons. GADP preserves

the correlations the best when it is applied on a sufficiently large data set having multi-

variate normal distribution. The data sets we have used do not have multivariate normal

distribution. Moreover, in our Extended Framework GADP has been applied on small sets

of records belonging to the leaves separately. Our future research plans include experiments

on the Extended Framework using C-GADP and EGADP instead of GADP.

The Extended Framework has also preserved a high data quality in terms of prediction

accuracy of the classifiers obtained from perturbed data sets. Additionally, it preserves the

original patterns significantly better than the patterns preserved by Random Framework

and Random Extended Framework. However, our Framework preserves original patterns

the better than the patterns preserved by Extended Framework. Extended Framework has

preserved the original patterns reasonably well in the experiments on Adult data set. In the

experiments on WBC data set the decision trees obtained from an original and a perturbed

data set are less similar.

GADP regenerates the data from an original correlation matrix. It appears that GADP

preserves the original correlations but adds a huge amount of noise since it regenerates the

data set instead of adding noise to the original data set. Amount of noise addition appears

to be high during the regeneration of data. Therefore, Extended Framework adds more

noise than Framework.

However, both Framework and Extended Framework preserves the domain (defined by

150

the conditional values of the LINFA) of each LINFA within a horizontal segment resulting

in a protection of all original logic rules in a perturbed data set. We confirm the protection

of original logic rules by applying the classifier (obtained from an original data set) on a

perturbed data set and on the original data set, and getting exactly the same prediction

accuracy in both cases. Hence, an obvious question is how a decision tree obtained from a

data set perturbed by Framework and Extended Framework can be different to the original

tree. We offer an explanation to this question as follows.

An information gain based decision tree builder algorithm chooses the attribute, for a

node of the tree, having the maximum information gain [85]. Since the domain of a LINFA

is preserved by the Extended Framework the information gain of the LINFA remains the

same in the perturbed data set. However, due to the noise addition the information gain of

another attribute can increase and thereby can be greater than the information gain of the

original LINFA. If this happens then the second attribute would be chosen as the LINFA

of the tree obtained from the perturbed data set. As a result we will have a perturbed

decision tree which will be different from the original tree.

We now explain how the information gain of an attribute can increase due to a noise

addition. Suppose a numerical attribute A has the domain [1,10] and the class attribute C

has the domain {yes, no} (see Figure 7.17). Let us consider a data set having 20 records,

out of which the first group of 10 records (record 1 through to record 10) have A < 5 and

the second group of 10 records have A ≥ 5. Also consider that out of the first 10 records

6 records (2, 3, 4, 6, 7 and 9) have C = yes and the remaining 4 records (1, 5, 8 and 10)

have C = no. Out of the second 10 records 4 records (13, 17, 19 and 20) have C = yes

and the remaining 6 records (11, 12, 14, 15, 16 and 18) have C = no. Assume that due to

the noise addition the value of A for 3 records (5, 8 and 9), originally having A < 5 and

C = no, increases to ≥ 5 . Also consider that the value of A for 3 other records (17, 19 and

20), originally having A ≥ 5 and C = yes, decreases to < 5 (See Figure 7.17). Therefore,

due to the noise addition distributions of class values for records having A < 5 will change.

Similarly, the distribution of class values, for records having A ≥ 5, will also change. The

changes of the distributions will result in an decrease of the entropy for attribute A meaning

an increase of the information gain for the attribute.

Both Framework and Extended Framework preserves a data quality better than two

other techniques called Random Framework and Random Extended Framework. Moreover,

the application of GADP on the records belonging to each leaf separately according to

151

<5

A

yes;2, 3, 4, 6, 7, 9

>=5

13, 17, 19, 20

11, 12, 14, 15, 16, 18

yes;

no;

<5

A

yes;2, 3, 4, 6, 7, 9,

>=5

 13

11, 12, 14, 15, 16, 18

yes;

no;

no; 1 no;1, 5, 8, 10

17, 19, 20

5, 8, 10,

BEFORE PERTURBATION AFTER PERTURBATION

Records C Records C

Figure 7.17: An example of how the information gain of an attribute can increase due to a
noise addition.

our Extended Framework preserves original patterns better than the use of GADP on the

whole data set at a time. This also justifies the reason why we need separate noise addition

techniques (such as the Framework and the Extended Framework) catered for data mining

when we already have techniques (such as GADP) tailored for statistical data analysis.

Crucial properties of a noise addition technique are the ability to maintain good data

quality and to ensure individual privacy. In order to evaluate a perturbation technique

we need to measure its ability to preserve high data quality and to provide enough secu-

rity/protection against privacy breach. In this chapter we have also used our techniques for

measuring data quality of a perturbed data set. In the next chapter we present a technique

for measuring security level in a perturbed data set.

152

Classifier Applied On
Name A B C

25,600 records 25,600 records 4,562 records
Corr.: 21,763 Corr. : 21,763 Corr. : 3822

DTtraining Incorr.: 3,837 Incorr.: 3,837 Incorr.: 740
(shown in ——————– ——————– —————–
Figure 7.1)

85% 85% 83.8%
Corr.: 21,716 Corr. : 21,721 Corr. : 3811

DTFrmwrk1 Incorr.: 3,884 Incorr.: 3,879 Incorr.: 751
(shown in ——————– ——————– —————–
Figure 7.2)

84.8% 84.8% 83.5%
Corr.: 21,716 Corr. : 21,703 Corr. : 3806

DTFrmwrk2 Incorr.: 3,884 Incorr.: 3,897 Incorr.: 756
(shown in ——————– ——————– —————–
Figure 7.3)

84.8% 84.8% 83.4%
Corr.: 15,895 Corr. : 20,739 Corr. : 3,661

DTRandom1 Incorr.: 9,705 Incorr.: 4,861 Incorr.: 901
(shown in ——————– ——————– —————–
Figure 7.4)

62.1% 81.0% 80.2%
Corr.: 15,968 Corr.: 20,894 Corr. : 3,687

DTRandom2 Incorr.: 9,632 Incorr.: 4,706 Incorr.: 875
(shown in ——————– ——————– —————–
Figure 7.5)

62.4% 81.6% 80.8%
Corr.: 21,677 Corr. : 20,998 Corr. : 3,717

DTExtndFrm1 Incorr.: 3,923 Incorr.: 4,602 Incorr.: 845
(shown in ——————– ——————– —————–
Figure 7.6)

84.7% 82% 81.5%
Corr.: 21,593 Corr. : 21,201 Corr. : 3,728

DTExtndFrm2 Incorr.: 4,007 Incorr.: 4,399 Incorr.: 834
(shown in ——————– ——————– —————–
Figure 7.7)

84.3% 82.8% 81.7%
Corr.: 16,021 Corr. : 20,396 Corr. : 3,586

DTRandomExt1 Incorr.: 9,579 Incorr.: 5,204 Incorr.: 976
(shown in ——————– ——————– —————–
Figure 7.8)

62.6% 79.7% 78.6%
Corr.: 16,041 Corr. : 20,273 Corr. : 3,592

DTRandomExt2 Incorr.: 9,559 Incorr.: 5,327 Incorr.: 970
(shown in ——————– ——————– —————–
Figure 7.9)

62.7% 79% 78.7%

Table 7.1: Prediction Accuracy of the Classifiers Obtained from the Unperturbed and
Various Perturbed Adult Data Sets.

153

Classifier Applied On
Name A B C

600 records 600 records 83 records
Corr.: 596 Corr. : 596 Corr. : 74

DTtraining Incorr.: 4 Incorr.: 4 Incorr.: 9
(shown in ——————– ——————– —————–

Figure 7.10)
99.3% 99.3% 89.2%

Corr.: 596 Corr. : 592 Corr. : 72
DTFrmwrk1 Incorr.: 4 Incorr.: 8 Incorr.: 11
(shown in ——————– ——————– —————–

Figure 7.11)
99.3% 98.7% 86.8%

Corr.: 593 Corr. : 590 Corr. : 73
DTFrmwrk2 Incorr.: 7 Incorr.: 10 Incorr.: 10
(shown in ——————– ——————– —————–

Figure 7.12)
98.8% 98.3% 88%

Corr.: 412 Corr. : 399 Corr. : 55
DTRandom1 Incorr.: 188 Incorr.: 201 Incorr.: 28
(shown in ——————– ——————– —————–

Figure 7.13)
68.7% 66.5% 66.3%

Corr.: 423 Corr.: 404 Corr. : 53
DTRandom2 Incorr.: 177 Incorr.: 196 Incorr.: 30
(shown in ——————– ——————– —————–

Figure 7.14)
70.5% 67.3% 63.9%

Corr.: 591 Corr. : 576 Corr. : 77
DTExtndFrm1 Incorr.: 9 Incorr.: 24 Incorr.: 6

(shown in ——————– ——————– —————–
Figure 7.15)

98.5% 96% 92.8%
Corr.: 596 Corr.: 568 Corr. : 76

DTExtndFrm2 Incorr.: 4 Incorr.: 32 Incorr.: 7
(shown in ——————– ——————– —————–

Figure 7.16)
99.3% 94.7% 91.6%

Corr.: 548 Corr. : 565 Corr. : 69
DTRandomExt1 Incorr.: 52 Incorr.: 35 Incorr.: 14

(shown in ——————– ——————– —————–
Figure 7.10)

91.3% 94.2% 83.1%
Corr.: 502 Corr.: 532 Corr. : 68

DTRandomExt2 Incorr.: 98 Incorr.: 68 Incorr.: 15
(shown in ——————– ——————– —————–

Figure 7.10)
83.7% 88.7% 81.9%

Table 7.2: Prediction Accuracy of the Classifiers Obtained from the Unperturbed and
Various Perturbed WBC Data Sets.

154

Classifier Applied On
Name A B C

600 records 600 records 83 records
Corr.: 548 Corr.: 565 Corr. : 69

DTGADP 1 Incorr.: 52 Incorr.: 35 Incorr.: 14
(without ——————– ——————– —————–
ALPT)

91.3% 94.2% 83%
Corr.: 502 Corr.: 532 Corr. : 68

DTGADP 2 Incorr.: 98 Incorr.: 68 Incorr.: 15
(without ——————– ——————– —————–
ALPT)

83.7% 88.7% 82%

Table 7.3: Prediction Accuracy of the Classifiers Obtained from WBC Data Sets Perturbed
by GADP technique only.

155

Chapter 8

Measuring of Disclosure Risk

Before we can proceed to security analysis, we need to produce a definition of disclosure.

We note that an exposure of any sensitive information can be considered as disclosure. For

example, sometimes a set of rules obtained from a data set is considered sensitive and

therefore the exposure of the rules is regarded as disclosure [37, 90]. A system proposed

in [37, 90] alerts a data miner to sensitive rules, since the miner may not be aware of the

sensitivity level of a rule. In another scenario an exposure of any single value is considered

as disclosure [3]. Generally, revealing a sensitive attribute value belonging to an individual

is considered as disclosure [73]. Such disclosure usually occurs through a re-identification of

the record. However, even a re-identification that does not cause an exposure of a sensitive

attribute value can still be considered as disclosure [62]. Similarly, an exposure of a sensitive

attribute value, without a re-identification, is also regarded as disclosure known as attribute

disclosure [62]. If an intruder can narrow down the list of all possible records that could have

originated from the “target record” to a set of records having the same sensitive attribute

value, then the attribute value is considered to be disclosed, even without any exact record

re-identification. By “target record” we mean an original record, in which the intruder is

interested.

Due to the varying definitions of disclosure it is not trivial to measure disclosure risk.

Moreover, disclosure risk depends on various other factors such as supplementary knowledge

of an intruder and the approach taken by an intruder. However, effective measuring of

disclosure risk is important as the effectiveness of a data perturbation technique is evaluated

by the disclosure risk and the data quality of a perturbed data set.

In order to measure disclosure risk Lambert considered the re-identification of a record

156

as disclosure and the resultant exposure of a sensitive attribute value as the harm of the

disclosure [62]. Lambert assumes that for every perturbed record an intruder estimates the

probability of the record coming from a target record. The intruder then obtains a sensitive

attribute value from the perturbed record having the maximum probability. When an

intruder believes that he/she has worked out a sensitive information then, regardless of

whether or not the intruder has obtained a correct information, Lambert considers this as

“perceived disclosure”. However, when an intruder obtains a true information then this is

considered as “true disclosure”.

In what follows we consider both re-identification of the target record and disclosing a

confidential class as disclosure and we evaluate each one of them separately.

8.1 Measuring Disclosure Risk

Before we introduce our approach to measuring the disclosure risk, we first need to

remind the reader that the main aim of our noise addition technique is twofold:

1. to prevent disclosure of confidential individual class values contained in the data set;

we achieve this not only by perturbing the values of the class attribute itself but also

by introducing perturbation to other (non-confidential) attributes, in order to make

re-identification of the records difficult and in some instances even impossible;

2. to preserve not only statistical parameters of the data set (means, variances, etc), but

also the patterns discovered by the decision tree builder prior to perturbing the data

set. We note that there has been a research effort published in the literature where

the goal has been to hide confidential patterns [37, 90], but that is beyond the scope

of our study.

We are now ready to measure the risk of a confidential class value being disclosed to

an intruder who has a full access to the perturbed data set. We assume that the intruder

knows something about the record whose confidential class he/she intend to disclose. That

might be all of the non-class attributes, some of the attributes or perhaps just one or two

of them. The intruder basically has two options as follows.

• They can construct a decision tree from the perturbed data set. Then they can run

the record of interest through the constructed decision tree and relatively accurately

estimate the class of the record.

157

• Alternatively, the intruder can try to re-identify the record, that is, to match the

record he has interest in to the records of the perturbed data set, identify the best

match and adopt the class of the best match as the likely class of the original record.

We next discuss each of these two options.

1. Running the Record Through the Decision Tree: For intruder to successfully

run the decision tree and estimate the class, he/she needs to know influential attributes

for the leaf the record would naturally belong to. We argue that if the intruder has

such knowledge about the record, then he/she can always learn the class, regardless

whether the record was contained in the original training set or not. Thus, a record

from the training set that intruder has substantial knowledge of is not under greater

risk of disclosure than any other record known to the intruder. The only way to pre-

vent this kind of disclosure would be to mask (hide) patterns. However, that would go

against the main aim of our noise addition technique, which is to preserve the patterns

while hiding the individual confidential values. Thus we only need to consider option

2, which is based on re-identification of the records. We need to show that the intruder

is not likely to learn the confidential class through re-identification of the record with

more certainty then he/she can learn by running the record through the decision tree.

Indeed, we argue that the predictive accuracy of the decision tree built on the data

set perturbed by our method is very high as illustrated by our experiments. We shall

next discuss the accuracy of predicting the class through re-identification.

2. Record Re-identification: First of all, we note that it is not always a trivial job

to successfully re-identify a target record for the following reasons. First, an intruder

needs enough supplementary knowledge about the individual and about the pertur-

bation technique. Often an intruder knows something about the target record, but

may not know precise and sufficient information to match the attribute values that

appear in a released data set. For example, an intruder may know that the salary of a

target record is between 50K and 60K, but may not know the exact salary. In general,

the greater the intruder’s supplementary knowledge the higher the risk of disclosure.

Therefore, in order to perform a conservative disclosure risk assessment we assume

that an intruder knows every non-class attribute value of the target record. We also

158

assume that the intruder knows our data perturbation technique and the distribution

of noise. Additionally, the intruder knows that the target record exists in the released

data set.

We assume that an original data set having n records and m attributes is perturbed by

a technique such as the Framework, and thereby a perturbed data set having n records

and m attributes is produced. We present An Entropy Based Technique for measuring

disclosure risk in two different ways; 1. a risk of re-identification where the intruder

can re-identify the record and learn all the attributes with a certain probability, 2. a

risk of intruder learns the class of the target record. Note that it may be possible for

the intruder precisely learn the class even when re-identification is not possible. This

will happen when all or most suspect perturbed records have the same class.

We first consider re-identfication, that is, a scenario where an intruder takes a proba-

bilistic approach to identify the target record in a perturbed data set. Let us assume that

his/her target record is the xth record of an original data set. Recall that the intruder has

an access to a released data set and does not have access to the original data set. For each

record i of the perturbed data set the intruder can calculate the probability that a record

has been perturbed from the target record as follows.

Pxi =
∏m

j=1
P j

xi∑n

i=1
(
∏m

j=1
P j

xi)

where

Pxi is the probability of the ith record of the perturbed data set corresponds to the xth

record of the original data set, i.e., the target record;

P j
xi is the probability that the jth attribute value of the ith record of the perturbed data

set is the perturbed value of the jth attribute value of the xth record of the original data set;

m is the total number of non-class attributes; and

n is the total number of records.

159

The main challenge in the above formula is to calculate P j
xi. This probability can be

calculated from the distribution of noise. For example, if we have the jth attribute value

equal to 5 in both original and a perturbed data set then we estimate P j
xi is 40% given

the probability of zero noise is 40%. However, in our Framework the distribution of noise

actually depends on the leaf of the original decision tree that contain the target record

x. To illustrate this point, we consider the decision tree in Figure 7.10 obtained from the

original WBC database. Each attribute has the same domain [1,10]. We select the record

with ID=1321264 belonging to the Leaf 1. The logic rule corresponding to this leaf is

“Uniformity of Cell Size” ≤ 2 AND “Bare Nuclei” ≤ 3. Thus for Leaf 1, the new domain

for attribute Uniformity of Cell Size is [1,2], while the new domain for the attribute Bare

Nuclei is [1,3]. Recall that when perturbing the influential attributes in our Framework we

ensure that the perturbed values remain within the boundaries of the leaf; in this case, the

perturbed value of Uniformity of Cell Size remains in the range [1,2], while the new value

for Bare Nuclei remain in the range [1,3].

We assume that the intruder knows the probability distribution of added noise. How-

ever, he/she does not know the leaf of the original tree to which the target record x belongs.

The best the intruder can do in order to estimate P j
xi is to run the target record through

the decision tree built on the perturbed data set and adopt the attribute domains of the leaf

in which the target record arrives. Using this strategy the intruder can calculate the prob-

ability Pxi for each and every record of the perturbed data set. We use these probabilities

to calculate the entropy of the whole perturbed data set with respect to re-identification of

a target record x as follows:

H RI
x = −∑n

i=1 Pxi log2Pxi = −∑n
i=1 (

∏m

j=1
P j

xi∑n

i=1
(
∏m

j=1
P j

xi)
)log2 (

∏m

j=1
P j

xi∑n

i=1
(
∏m

j=1
P j

xi)
).

We next estimate the overall security or, alternatively, disclosure risk of the whole

perturbed data set, with respect to all original records. We calculate H RI
x , x = 1, 2, ...

... n, i.e., the entropy of the perturbed data set with respect to each record of the original

data set. We then calculate the mean entropy, µ =
∑n

x=1
HRI

x

n and the standard deviation,

σ =

√∑n

x=1
(HRI

x −µ)2

n .

The higher entropy H RI
x indicates the higher security and the lower disclosure risk. The

higher value of µ generally implies the higher level of overall security of the data set. The

160

overall security can also be estimated as follows. Let T be the percentage of total number

of original records that have H RI
x lower than a user defined threshold H RI

t . If T ≤ v, where

v is a user defined threshold then we consider the data set secure for T, Ht and v. We can

also use µ, σ, T, v and H RI
t to have a more detailed report on the security level of a data

set.

3 11 19 204 5 6 7 8 9 10 12 13 14 15 16 17 18 2121

Perturbed Records

.125

.250

.375

.500

Pr
ob

ab
ili

ty

Original Record No. 1

Original Record No. 2

Figure 8.1: The probability distribution of a perturbed record originating from the target
record x.

We now illustrate the basic concepts of our security measure with an example and a

couple of figures. Suppose we have an original and a perturbed data set, each of them

having 21 records. Figure 8.1 shows a possible probability distribution of a perturbed

record originating from the target record x. According to the figure, the probability that

the perturbed record 1 originated from the original record 1 is 0.500, which is the maximum

value for original record 1. Similarly, the maximum probability for the original record 2

corresponds to the perturbed record 19. From each of these distributions we calculate

the entropy of the perturbed data set (Figure 8.2). The dashed line shows HRI
t and the

nodes/circles represent the entropy value of the perturbed data set calculated against each

original record. For a user defined threshold of HRI
t = 2.45 there are 2 out of 21 original

records (record 1 and record 18) for which the entropies are less than HRI
t . Therefore, the

perturbed data set would not be considered secure for HRI
t = 2.45 and v = 0.05.

We next explore the risk of an intruder learning the class of the target record. We

consider a generalised scenario where an intruder is interested to check if an individual has

161

3 11 19 204 5 6 7 8 9 10 12 13 14 15 16 17 18 2121

1

2

4

3

Mean Entropy

Origina Records

E
nt

ro
py

 o
f

th
e

pe
rt

ur
be

d
da

ta
se

t

N = 2, n=
21

2
x 100%

Threshold Entropy H_t = 2.45 (say)

Figure 8.2: Entropies of a perturbed data set calculated for each original record.

a class value belonging to a subset of the domain of the class attribute. We present an

example scenario as follows. An employer may have an interest to learn if an employee has

a serious disease/health problem, which needs a long, continuous and expensive treatment.

The employer may have a list of diseases/ health problems which he/she considers serious.

We also assume that the employer has access to a perturbed data set (having the record

that belongs to the particular employee) where the class attribute is “diagnosis”.

We assume that in such a scenario an intruder first attempts to identify the target

record and then learns the confidential class value. Therefore, in order to define the se-

curity level of a data set we first estimate an entropy Hc
xk for a target record x having a

class value k ∈ L = {l1, l2, ...ls}, where {l1, l2, ...ls} ⊆ (D), and D is the domain of the class

attribute. The probability that a record x has the class value in the set L is as follows.

Pc
x (L) =

∑n
i=1 (

∏m

j=1
P j

xi∑n

i=1
(
∏m

j=1
P j

xi)
×∑lz

k=l1
Pc

i (k))

where Pc
i (k) is probability that the value of the class attribute of the ith record of the

perturbed data set is equal to k ∈ L. Note that the probability P c
i (k) can be estimated

from a decision tree built on the perturbed data set. We simply need to consider the leaf

containing the record i and the number of records for each value of the class. For example,

let record i belong to the leaf L5, where there are nk records with class value k, k ∈ [1, t].

162

Then P c
i (k) = nk∑t

i=1
ni

. We emphasise again that this is just the best estimate the intruder

can make, as the original and perturbed decision tree may differ to some extent.

The corresponding entropy for intruder learning the class of the target record Hc
x(L)

can be estimated as follows.

Hc
x(L) = −P c

x(L)log2P
c
x(L)− Pc

x (D\L)log2Pc
x (D\L).

If Hc
x(L) is greater than a user defined thresholds Hc

t , then we define the perturbed

data set as secure for the target record x with respect to L and Hc
t . In order to check the

overall security of the perturbed data set with respect to L and Hc
t , we estimate Hc

x(L)

for each record belonging to an original data set. We then count b, the number of original

records, where Hc
x(L) < Hc

t . If b
n (where n is the total number of records in the original

data set) does not exceed a user defined threshold v then we consider the data set as secure

with respect to L, Ht and v.

We next turn our attention to the supplementary knowledge an intruder has about the

target record x and how important this knowledge is for the successful re-identification of

the target record and/or learning its class. As we pointed out earlier the intruders supple-

mentary knowledge can range from knowing all the attributes except for the confidential

class attribute, through knowing several attributes including influential ones, to knowing

only a few innocent attributes. It is easy to see that the more knowledge the intruder has

the more successful he/she will be in re-identifying the record and/or learning the class.

We illustrate this on one of our perturbed WBC data set DSFrmwrk1. The decision

tree built from this data set (shown in Figure 7.11) is very similar to the original decision

tree (95.5 % records having Type A rules). This high level of similarity is very typical for

the WBC data set that is perturbed by our Framework and it will be of assistance to the

intruder, thus our estimate will be conservative. We randomly selected a record with ID

1321264 and we calculated both HRI
1321264 and Hc

1321264. In order to evaluate the results we

compare them with the corresponding entropies for the case where the intruder has access

to the unperturbed data set. In Table 8.1 row label corresponds to the number of non-class

attributes known to the intruder and the columns correspond to the entropies for the cases

where the intruder has access to the original data set and the perturbed data set.

The following data is relevant for the purpose of understanding the results in Table 8.1:

the total number of records is 600, and for the case where the intruder has no knowledge

163

Number of Original Perturbed
attributes
known Hc

1321264 HRI
1321264 Hc

1321264 HRI
1321264

9 0 0 0.311 6.643
8 0 0 0.34 6.78
7 0 0 0.434 7.328
6 0 0 0.56 7.689
5 0 0 0.747 7.794
4 0 2.322 0.835 7.988
3 0 2.585 0.86 8.199
2 0 3 0.955 8.404
1 0.503 5.17 0.970 8.676
0 0.931 9.229 0.931 9.229

Table 8.1: A Compare of Entropies for the Cases Where the Intruder Has Access to the
Original and the Perturbed Data Set.

about the record except that it exists in the perturbed data set the class entropy Hc
1321264 =

0.931 and the record re-identification entropy HRI
1321264 = 9.229, as shown in the bottom row

of the table. The noise added to the attribute values roughly follows Gaussian distribution

with mean value 0 and standard deviation 33.33 % of the attribute domain which is [1,10] for

leaf innocent attributes and determined by the leaf for Leaf Influential Attributes. Record

with ID 1321264 belongs to leaf 1 which has domain D2 = [1, 2], D2 = [1, 3] and all the

other domains are [1,10].

From Table 8.1 we see that for unperturbed data set the intruder can precisely learn

the class whenever he/she knows at least two attribute values for the target record, and can

precisely identify the record and learn all the other attribute values including class whenever

he/she knows 5 or more attribute values for the target record.

However, if the intruder has access only to the perturbed data set he/she will never be

able to re-identify the record or the class with certainty even if he/she knows all 9 non-class

attributes. Moreover, the entropy for re-identification remains high regardless of how many

attribute values the intruder knows. For example, even if intruder knows all 9 attribute

values of the target record the entropy for re-identification of record is 6.643 which roughly

corresponds to the case where there are 100 equally likely records to choose from. On

the other hand, in this example the class entropy remains relatively low whenever intruder

164

knows 3 or more attribute values of the target record.

What we consider the most valuable property of our noise addition technique is the fact

that we can always adjust the level of noise we are adding to the attributes so as to achieve

the desired level of the security. As an extreme case, we can add noise uniformly distributed

over whole domain to all innocent attributes and still preserve the patterns. Then from the

point of view of an intruder who knows only the values of innocent attributes, all perturbed

records will be equally likely and the entropy will be maximum. The only attributes we

can not perturb beyond the limits given by the leaves are the leaf influential attributes.

However, we argue if leaf influential attributes are known to the intruder then he/she can

run the record through the decision tree to learn the class rather than attempt to re-identify

the record. He/she will not however be able to learn other attributes in addition to the class

attribute as the re-identification entropy remains high regardless of intruders knowledge of

influential attributes.

In order for perturbed data set to be useful beyond classification it is desirable to keep

the noise level low. In that case our method works better for dense data sets such as WBC,

than for very sparse data sets where preventing re-identification would require higher level

of noise simply because the records are very diverse.

8.2 Conclusion

In this chapter we have presented a novel techniques for measuring a disclosure risk of

a perturbed data set. Using the technique we can verify a perturbed data set whether or

not it is secure. In the next chapter we present an observation on prediction accuracy of a

perturbed data set as an indicator of data quality.

165

Chapter 9

Data Quality

We discussed a number of existing data perturbation techniques in Chapter 3. We

also presented novel data perturbation techniques in Chapter 4, Chapter 5, Chapter 6

and Chapter 7. Effectiveness of such techniques is typically evaluated by measuring the

disclosure risk and data quality of a perturbed data set. Therefore, we presented a couple

of techniques for measuring disclosure risk in Chapter 8. The data quality of a perturbed

data set is measured, in Chapter 7, through a few quality indicators. The indicators are

the similarity of decision trees built from an original and the perturbed data set, prediction

accuracies on underlying data sets and on a testing data set, and the correlation matrices

of the original and the perturbed data sets. However, the data quality of a perturbed data

set is typically evaluated by just the prediction accuracy of the classifier obtained from

the data set [60, 69, 116]. Hence, in this chapter we explore the suitability of prediction

accuracy as a sole indicator of data quality. In the experiments we evaluate a data quality

by comparing the prediction accuracies of decision trees and neural networks, built from

original and perturbed data sets. We then compare this evaluation technique to the one

that uses logic rules associated with the decision tree classifiers.

9.1 Motivation

Many studies pay substantial attention to predictive accuracy of a classifier. This

motivates us to explore the relationship between the predictive accuracy of a classifier and

the data quality of the underlying data set on which the classifier was built.

Lim, Loh and Shih [69] used predictive accuracy of classifiers in order to compare them.

166

They used twenty-two decision trees, nine statistical, and two neural network classifiers in

their experiments. They worked with sixteen data sets and added independent noise to

each of them and thus they got sixteen perturbed data sets. They compared all classifiers

on these 16 original and 16 perturbed data sets in terms of classification error rate and

computational time. Additionally, for decision tree classifiers they used the number of

nodes as a base for comparison. They found that the average error rates for the majority

of classifiers are not statistically significant. All but three classifiers adjusted to noise well.

The performances of the classifiers were rated good, average or bad. None of the decision

trees or statistical classifiers had a good performance on the unperturbed data set when it

had a bad performance on the corresponding perturbed data set. This was the case for all

16 data sets. One of the two neural network classifiers was rated “good” for an original

data set and “bad” for the corresponding perturbed data set. However, this was the case

for only one out of all 16 data sets.

Lim, Loh and Shih [69] found that despite of independent noise addition the prediction

accuracy of a decision tree built on a perturbed data set always remains good when the

accuracy of the tree built on the original data set is good. This is understandable as

independent noise will not significantly affect homogeneous leaves. However, it is also well

known that the structure of decision trees is indeed very sensitive to noise [64] and some

patterns especially less prominent ones will be destroyed by noise. Keeping in mind that one

of the main purposes of data mining is exploring new patterns, we argue that the finding

of Lim, Loh and Shih exposes the fact that a good prediction accuracy may not be always

a good measure of the underlying data quality.

Wilson and Rosen [116] compared several perturbation techniques, namely Simple Ad-

ditive Data Perturbation (SADP), General Additive Data Perturbation (GADP) excluding

the categorical dependant variable, and General Additive Data Perturbation (GADP-W)

including the categorical dependant variable, in terms of predictive accuracies of classifiers

built on the perturbed data sets. General Additive Data Perturbation technique was orig-

inally proposed by Muralidhar, Parsa and Sarathy [73]. They also introduced four types

of bias and showed that previously proposed perturbation techniques, including SADP,

experienced at least one of these biases. They then showed that General Additive Data

Perturbation technique was free of these four biases. Wilson and Rosen [116] commented

that biases discussed by Muralidhar et al. [73] did not include a possible bias that could

be generated from changes of knowledge-based relationship. They called such bias “type

167

DM” bias. They used 2 different data sets, IRIS Plant Database and BUPA Liver Disorders

Database. SPSS’s Answer Tree software, using QUEST method, was used as the classifier.

For the Liver database, there was no significant difference between the predictive accuracy

of the data sets perturbed by different perturbation techniques and the original data set.

However, for the IRIS database the performance of GADP was significantly worse than even

that of SADP. Wilson and Rosen suggested that this was an evidence of existence of Type

DM bias. Wilson and Rosen used the prediction accuracy as a measure of data quality, in

their experiments to compare the performances of different perturbation techniques.

Kohavi [60] found that the predictive accuracy of a Naive-Bayes classifier is better for

small data sets and the predictive accuracy of Decision Tree is better for large data sets. He

then proposed a classifier that was a hybrid of Naive-Bayes and Decision Tree classifiers.

Agrawal and Srikant [3] argued that the extraction of aggregate data was the main task

of data mining. They attempted to develop accurate models without knowing individual

records. They trained the decision tree classifier on the dataset that had been perturbed.

They used the perturbed distribution to reconstruct the distribution of original dataset

using a novel reconstruction technique. Then they built decision tree classifiers from these

reconstructed distributions and compared their predictive accuracies with the predictive

accuracy of the decision tree built from the original data.

9.2 Our Work

In this chapter we concentrate on the predictive accuracy of classifiers obtained from

original and several carefully perturbed data sets. We use two different data sets, namely

Boston Housing Price (BHP) data set having 350 records, and Wisconsin Breast Cancer

(WBC) data set having 699 records. The WBC data set has been introduced in Chapter 4.

Both of these data sets are available from the UCI Machine Learning Repository [77]. They

are very often used in the data mining community for various research purposes. We divide

each of these data sets into two parts, the training set and the testing set. The BHP data

set is thus divided into 300 records of training set and 50 records of testing set. Similarly

the WBC data set is divided into 350 records of a training set and 350 records of a testing

set with one record overlapping.

We first build a classifier, using well-known Quinlan’s decision tree builder See5, from

the training set. A decision tree obtained from the training BHP data set is shown in

168

Figure 9.1). We then perturb the training data set using three class attribute perturba-

tion techniques, namely Random Perturbation Technique (RPT), Probabilistic Perturbation

Technique (PPT) and All Leaves Probabilistic Perturbation Technique (ALPT) introduced

in Chapter 4. The expected number of changed records is equal in all of the three pertur-

bation techniques.

>7.007

av rooms per

dwelling

<= 7.007

percentage low
income

>5.39 <= 5.39

av. room per
dwelling

<= 6.485 >6.485

top 20

(13/2)

bottom 80

bottom 80

(249/8)

top 20

(33/1)

(5)

LEAF 1

LEAF 2

LEAF 3 LEAF 4

Figure 9.1: A decision tree obtained from the training BHP data set having 300 records.
Squares represent internal nodes, unshaded circle represents homogeneous leaf and shaded
circles represent heterogeneous leaves.

We then use See5 Decision Tree builder (produced by RuleQuest Research) for building

decision trees from perturbed data sets. We first perturb an original data set applying RPT

and build a decision tree classifier from the perturbed data set. We then apply the classifier

on the testing data set, the original data set and the perturbed data set and record the

prediction accuracy of the classifier on each of the three data sets. We repeat the test a few

times. We then carry out similar tests for data sets perturbed by PPT and ALPT. We use

both BHP and WBC data set for all experiments.

We then build a Neural Network classifier from an original data set. We apply the clas-

sifier on the testing data set and the original data set and record the prediction accuracies.

We then perturb the original data set by RPT and build a Neural Network classifier from

the perturbed data set. We apply the classifier to the testing data set, the original data

set and the perturbed data set from where the classifier is built. We perturb the original

data set by RPT four more times and repeat the same experiment each time. We carry out

169

similar experiments on data sets perturbed by PPT and ALPT. We carry out 5 tests on

each of the techniques. In the experiments with Neural Network classifier we use both BHP

and WBC data set for all tests. We present our experimental result in the next section.

For Neural Network classifier we use STATISTICA Neural Network software of StatSoft

Inc. and three layer network architecture, namely the input layer, the hidden layer/s and

the output layer, using back propagation training algorithm for all experiments carried out.

We now describe the Neural Network used in experiments on a WBC data set perturbed by

Probabilistic Perturbation Technique (PPT). The input layer has eight input variables, each

of the two hidden layers has four neurons and the output layer has one output variable.

Weights and threshold values are shown below, where H1.2 means neuron number 2 of

hidden layer number 1.

H1.1 H1.2 H1.3 H1.4 H2.1 H2.2 H2.3 H2.4
Thresh. -0.8735 -1.5528 -1.60359 0.614384 2.9101 1.297828 2.227079 -0.4534
VAR2 -0.9523 0.2020 -1.0496 0.654275
VAR3 -0.1831 -0.9349 -1.46283 1.624865
VAR4 -0.8872 -1.5113 -1.47357 0.3525004
VAR5 -1.1136 -0.8607 -0.01692 1.027643
VAR6 -1.4474 -2.2931 -2.67157 1.620856
VAR7 -0.7612 -1.5256 -1.90809 0.3553013
VAR8 0.6426 0.2769 -0.6655 0.7896174
VAR9 -0.2887 -1.8095 -1.39306 0.8494807
H1.1 -0.213 1.56727 -1.14158 -0.6792
H1.2 -1.35024 2.62223 -0.5001 -3.1151
H1.3 -0.6733 3.37780 -1.72689 -2.9908
H1.4 -0.8417 -2.18433 -1.39512 2.9166

9.3 Experimental Results

We present our experimental results in four tables. Table 9.1 and Table 9.2 show the

experimental results of Decision Tree (DT) classifiers on BHP and WBC data set respec-

tively. In these tables DT1 and DT8 are obtained from original data sets while DT2, DT3

and DT9 are obtained from data sets perturbed by Random Perturbation Technique (RPT).

DT4, DT5 and DT10 are obtained from data sets perturbed by Probabilistic Perturbation

Technique (PPT) while the rest DTs of Table 9.1 and Table 9.1 are obtained from data sets

perturbed by All Leaves Probabilistic Perturbation Technique (ALPT).

170

Name of Number of Attr. Attr. in Attr. in Tree Data set % of
Decision Attr. in Both in this but Original Size Incorrect

Tree the Tree Original Not in the Tree but Prediction
and This Original Not in

Tree Tree this Tree
A B C D E F G H

DT 1 4 - - - 4 Original 3
Original Testing 12
DT 2 4 3 1 1 6 Original 3
RPT Testing 10

Perturbed 3
DT 3 4 3 1 1 6 Original 4.67
RPT Testing 8

Perturbed 3.67
DT 4 2 2 0 2 4 Original 4.67
PPT Testing 10

Perturbed 4.33
DT 5 4 3 1 1 6 Original 4
PPT Testing 12

Perturbed 2
DT 6 6 3 3 1 11 Original 3.33
ALPT Testing 12

Perturbed 5.67
DT 7 2 2 0 2 3 Original 4.67
ALPT Testing 10

Perturbed 8.33

Table 9.1: Experimental Results of Decision Tree Classifiers on the BHP Data Set.

The neural network classifier built from the original training BHP data set is called

BHP-Original in Table 9.3. We apply this classifier on the testing BHP data set and the

original BHP data set.

We perturb the original BHP data set 5 times by RPT and build neural network

classifiers from each of these 5 perturbed data sets. In general we call these classifiers

BHP-Random, which is a set of 5 classifiers. We apply each of these 5 classifiers on the

BHP testing data set, the BHP original data set and the perturbed data set from where

the classifier is built. In column E, F and G of Table 9.3 we show the mean, median and

mode of the prediction accuracies of 5 classifiers of BHP-Random classifier set. Similarly,

BHP Probabilistic and BHP-All-Leaves are two sets of 5 classifiers obtained from the data

sets perturbed by PPT and ALPT respectively, while BHP-Original is a single classifier.

171

Name of Number of Attr. Attr. in Attr. in Tree Data set % of
Decision Attr. in Both in this but Original Size Incorrect

Tree the Tree Original Not in the Tree but Prediction
and This Original Not in

Tree Tree this Tree
A B C D E F G H

DT 8 4 - - - 4 Original 1.71
Original Testing 1.71
DT 9 4 4 0 0 6 Original 1.71
RPT Testing 1.71

Perturbed 1.71
DT 10 5 4 1 0 7 Original 2.86
PPT Testing 3.14

Perturbed 2.86
DT 11 6 3 3 1 11 Original 1.14
ALPT Testing 0.86

Perturbed 2.86

Table 9.2: Experimental Results of Decision Tree Classifiers on the WBC Data Set.

Table 9.4 is identical to Table 9.3 except that Table 9.4 deals with WBC data set.

We now compare our experimental results to those that we present in Chapter 4, where

the data quality was measured by the similarities of the Decision Trees. The similarity of

decision trees (DTs) was measured by the similarity of logic rules associated with the DTs.

The data quality of a data set perturbed by the ALPT was the worst among these three

perturbed data sets, and the data quality of a data set perturbed by PPT is slightly worse

than that of a data set perturbed by the RPT. These results were as expected. ALPT

technique adds noise randomly to all records in a data set. On the other hand, RPT and

PPT only add noise to records in heterogenous leaves, and in such a way that the total

numbers of minority and majority records remain unchanged, or very similar with high

probability. Thus these techniques completely preserve all the patterns identified by the

leaves of an original decision tree, which are arguably the strongest patterns in the data set.

Our experimental results show that the prediction accuracy of the DT classifiers as

a measure of data quality is not consistent with comparing the trees based on logic rules.

Careful observation of Table 9.1 and Table 9.2 reveals that the prediction accuracies of

classifiers obtained from data sets, which are perturbed by ALPT, are not significantly worse

than the prediction accuracies of the classifiers obtained from other data sets. However, the

172

Classifier Classifier Classifier Mean of % Median of % Mode of %
Name Produced Applied of Error in of Error in of Error in

From on Prediction Prediction Prediction
A B C D E F

BHP Original Original BHP Original 9.42 9.42 9.42
data set Testing 8 8 8

BHP Random BHP data set, Original 11.67 13 Diff
perturbed by Testing 14 14 Diff

RPT Perturbed 12.87 15 Diff
BHP Probabilistic BHP data set, Original 11.93 12.67 Diff

perturbed by Testing 14 16 16
PPT Perturbed 14.13 15 Diff

BHP All-Leaves BHP data set, Original 18.53 19.67 Diff
perturbed by Testing 23.2 22 Diff

ALPT Perturbed 20.73 22 Diff

Table 9.3: Experimental Results of Neural Network Classifier on BHP Data Set. “Diff.” in
Col. G Means That There are 5 Different Values in All 5 Experiments and Hence There is
No Single Mode Value.

Classifier Classifier Classifier Mean of % Median of % Mode of %
Name Produced Applied of Error in of Error in of Error in

From on Prediction Prediction Prediction
A B C D E F

WBC Original Original WBC Original 2.86 2.86 2.86
data set Testing 1.71 1.71 1.71

WBC Random WBC data set, Original 2.97 2.86 2.29,3.71
perturbed by Testing 1.6 1.43 1.43

RPT Perturbed 3.89 3.43 3.43
WBC Probabilistic WBC data set, Original 3.03 3.43 3.43

perturbed by Testing 2.46 2.29 2
PPT Perturbed 3.31 3.71 3.71

WBC All-Leaves WBC data set, Original 3.49 3.14 3.14
perturbed by Testing 2.11 1.71 1.43

ALPT Perturbed 6.57 6.57 7.71

Table 9.4: Experimental Results of Neural Network Classifier on WBC Data Set.

173

data quality of the data sets, which are perturbed by ALPT, appears to be worse than the

same of other data sets in the sense of the dissimilarity of the trees (see col. B, C, D, E and

F of Table 9.1 and Table 9.2) and also how we perturb the data sets.

Table 9.4 demonstrates that for WBC data set the prediction accuracy of the Neural

Network classifier is also not significantly correlated to the data quality of the data set.

However, Table 9.3 illustrates that for BHP data set, this is not the case. Here ALPT

gives much worse prediction accuracy than the other methods. This is consistent with

dissimilarity of the trees as a measure of data quality.

9.4 Conclusion

Our experimental results indicate that measuring data quality by prediction accuracy of

the decision trees is inconsistent with measuring data quality by similarity of the decision

trees built on original and perturbed data sets. Although, ALPT technique seemed to

produce significantly worse results in the sense of decision trees’ similarity, it doesn’t appear

to be worse in the sense of prediction accuracy. The exception to this observation is neural

network classifier on BHP data set. It is well known that in terms of prediction accuracy

neural networks are more sensitive to noise than decision trees and it appears that techniques

such as RPT and PPT are much better suited than ALPT to protect the confidentiality

of records in the data sets used for building neural network classifiers. However, these two

techniques do not seem to be superior for decision trees, in the terms of prediction accuracy.

We offer a few possible explanations. When we add little amount of noise we drop

off the data quality, which is reflected by the dissimilarity of the DTs obtained from the

perturbed data sets. However, as added noise is random and does not exhibit any significant

pattern it is highly unlikely that a new pattern will be generated in the perturbed data set.

It is much more probable that adding the noise will only weaken or strengthen the existing

patterns. This is illustrated in Table 9.1 and Table 9.2 where the classifier described in the

last row of each table actually performed worse on the perturbed data sets on which they

were built than on the original data sets. In other words perturbed data sets did not exhibit

as strong patterns as the original data set.

When a decision tree has a good prediction accuracy on the underlying data set (i.e.

the data set from which the tree is obtained) then we consider that the tree represents the

patterns of the underlying data set very well. Therefore, we suggest that if a decision tree

174

obtained from a perturbed data set is similar to the tree obtained from the original data

set and both trees have good accuracies on their underlying data sets then the perturbed

data set can be considered as similar to the original data set. Therefore, in such a case the

data quality of the perturbed data set can be considered as good.

175

Chapter 10

Conclusion

We presented a privacy preserving technique that adds noise to each and every at-

tribute, both numerical and categorical, of a data set. We added noise in such a way so

that a high data quality is preserved in the perturbed data set. We measured data quality

through the following quality indicators: degree of similarity between two decision trees

obtained from an original and a perturbed data set, prediction accuracy of the decision

trees, and correlation matrices of the original and the perturbed data set. Therefore, the

perturbed data set can be used for classification, prediction and correlation analyses. More-

over, since we add a little amount of noise the perturbed data set can also be used for many

other data analyses. Since noise is added to all attributes, it makes record re-identification

determining the confidential class values difficult.

We presented techniques for adding noise to a sensitive class attribute. We added the

same amount of noise in three class attribute perturbation techniques, namely the RPT,

PPT and ALPT. We compared results of our experiments on all these techniques. Our

experimental results suggest that the RPT and PPT preserve the patterns better than the

ALPT - although the same amount of noise has been added in the techniques.

Noise addition to a sensitive class attribute reduces the disclosure risk of the confi-

dential class value belonging to an individual. Noise addition to all non-class numerical

attributes along with the class attribute further improves the security since an intruder

then faces higher level of difficulty in re-identifying a record in the first place. Moreover,

some numerical attributes, such as “salary” can themselves be sensitive. Therefore, we

presented techniques to add noise to all non-class numerical attributes. We divided the

non-class numerical attributes into two categories, namely the Leaf Influential Attribute

176

(LINFA) and the Leaf Innocent Attribute (LINNA). We perturbed these attributes by LIN-

FAPT and LINNAPT respectively. They used noise having normal distribution with mean

µ = 0 and variance σ2. The LINFAPT preserves the range defined by the conditional

values of a LINFA. LINNAPT preserves the original domain of a LINNA. Therefore, these

techniques add noise to all numerical attributes by maintaining all logic rules revealed in

an original decision tree. We compared these techniques with a technique called RNAT

that does not preserve the ranges of LINFAs and adds noise having a uniform distribution.

Our experimental results indicate that both LINFAPT and LINNAPT preserve original

patterns much better than the RNAT.

Many data sets [77] have both numerical and categorical non-class attributes. For the

protection of individual privacy in such a data set we perturbed all non-class categorical

attributes along with other attributes. However, due to the absence of any natural ordering

among categorical values it is not straightforward to add noise to them. Following few ex-

isting techniques [40, 11, 61] we first clustered categorical values belonging to an attribute.

We used a novel clustering technique called DETECTIVE that has a few differences with

the existing techniques. Unlike most existing techniques DETECTIVE takes numerical at-

tributes as well into account while clustering categorical values. Therefore, DETECTIVE

is directly applicable to a data set having both numerical and categorical attributes. DE-

TECTIVE divides a data set in horizontal segments specific to an attribute for clustering.

It discovers the similarity between two values within a horizontal segment as two values

may be similar within a horizontal segment while they are not similar in the whole data

set. DETECTIVE explores similarity among values belonging to an attribute focusing on

few other relevant attributes only. We have experimentally compared DETECTIVE with

an existing technique called CACTUS and found DETECTIVE suitable for noise addition.

We presented CAPT a categorical value clustering technique that uses DETECTIVE. Our

experimental results indicate that CAPT preserves the original patterns while adding noise

to categorical values.

We presented a Framework that incorporates the techniques presented in the thesis

to perturb all attributes (both numerical and categorical) of a data set. Our experimental

results suggest that a perturbed data set preserves original patterns and prediction accura-

cies very well. Additionally due to the noise addition to all attributes it protects individual

privacy very well. We also presented an Extended Framework, which incorporates an exist-

ing technique called GADP with our categorical attribute and class attribute perturbation

177

techniques. Our experimental results suggest that the data set perturbed by the Extended

Framework also maintains the original correlations, at the expense of slightly reduced pat-

tern preservation when compared to our original Framework. We experimentally compared

our Framework and Extended Framework with two other random perturbation techniques

and pointed out the effectiveness of our proposed techniques in preserving good data qual-

ity while adding noise. The Extended Framework applies GADP on horizontal segments of

leaves separately and preserves original logic rules in a perturbed data set. Therefore, the

Extended Framework preserves original patterns better than the GADP when it is applied

on a whole data set.

In the Extended Framework we can use C-GADP or EGADP instead of GADP for

possibly maintaining the original correlations better. We also offered an explanation why

decision trees obtained from a data set perturbed by the Extended Framework are often

different from the original decision tree, although all original logic rules are preserved in the

perturbed data sets.

We also presented an entropy based technique for measuring the disclosure risk in a

perturbed data set.

Typically data quality is evaluated by just the prediction accuracy of the classifier built

on a perturbed data set [60, 69, 116]. We assessed this evaluation technique and compared

it with the technique/approach that we use for quality evaluation.

We discussed many existing noise addition techniques in Chapter 3. Some of them [73,

92, 74] add noise to numerical attributes only and preserve statistical parameters such as

mean and covariance matrix. These techniques do not intend to preserve patterns such as

classification rules. Another technique [3] adds random noise to all attributes in such a way

that the distribution of data values belonging to an original and a perturbed data set are very

different. It is possible to approximately reconstruct original distributions with the help of a

proposed technique. However, the original values of individual records can not be precisely

estimated from a perturbed data set. Therefore, attribute correlations and patterns of

an original data set are neither preserved nor recoverable. The technique proposed by

Estivill-Castro and Brankovic [28] preserves patterns, but adds noise only to categorical

class attribute. Our technique adds noise to all numerical and categorical attributes and

preserves both statistical parameters and data mining patterns such as classification rules.

A data set perturbed by the technique maintains high data quality and high level of security.

We believe that future research efforts in this area should focus on developing noise

178

addition techniques applicable to a wider spectrum of data mining tasks, including clustering

and mining for association rules. Our future efforts in this direction will start with further

refinements of our Extended Framework, especially using CGADP and EGADP, including

further experiments.

Another future direction emerging from this thesis is a generalisation of our clustering

techniques, that is, EX-DETECTIVE in order to make it more flexible regarding the size

and compactness of the desired clusters.

We also plan to further improve the data quality measures. For example, it would

be good if we can come up with a single quality value based on various quality indicators

such as prediction accuracy and similarity. We would also explore if our security measuring

technique can be improved.

179

Bibliography

[1] N. Adam and J. C. Wortmann. Security control methods for statistical databases: A

comparative study. ACM Computing Surveys, 21(4):515–556, 1999.

[2] D. Agrawal and C. C. Aggarwal. On the design and quantification of privacy pre-

serving data mining algorithms. In Proc. of the Twentieth ACM SIGACT-SIGMOD-

SIGART Symposium on Principles of Database Systems, Santa Barbara, California,

USA, May 2001.

[3] R. Agrawal and R. Srikant. Privacy-preserving data mining. In Proc. of the ACM

SIGMOD Conference on Management of Data, pages 439–450. ACM Press, May 2000.

[4] S. Agrawal and J. R. Haritsa. A framework for high-accuracy privacy-preserving

mining. In Proc. of 21st International Conference on Data Engineering (ICDE 2005),

IEEE, pages 193–204, 2005.

[5] S. Agrawal, V. Krishnan, and J. R. Haritsa. On addressing efficiency concerns in

privacy-preserving mining. In Proc. of 9th International Conference on Database Sys-

tems for Advances Applications (DASFAA 2004), pages 113–124, Jeju Island, Korea,

March 17-19 2004.

[6] P. Andritsos, P. Tsaparas, R. J. Miller, and K. C Sevcik. Clustering categorical

data based on information loss minimization. In Proc. of the 2nd Hellenic Data

Management Symposium (HDMS’03), Athens, Greece, September 2003.

[7] P. Andritsos, P. Tsaparas, R. J. Miller, and K. C. Sevcik. Limbo: Scalable clustering

of categorical data. In Proc. of the 9th International Conference on Extending Data

Base Technology (EDBT), Heraklion-Crete, Greece, March 2004.

180

[8] M. Atallah, E. Bertino, A. Elmagarmid M. Ibrahim, and V. Verykios. Disclosure

limitation of sensitive rules. In Proc. of IEEE Knowledge and Data Engineering

Workshop, pages 45–52, Chicago, Illinios, USA, November 1999.

[9] D. Barbara, J. Couto, and Y. Li. Coolcat: An entropy-based algorithm for categorical

clustering. In Proc. of ACM International Conference on Information and Knowledge

Management, 2002.

[10] D. Bentley. Randomized response. available from

http://www.dartmouth.edu/ chance/teaching aids/RResponse/RResponse.html. vis-

ited on 12.01.07.

[11] L. Brankovic. Usability of Secure Statistical Databases. PhD dissertation, The Uni-

versity of Newcastle, Australia, Newcastle, Australia, 1998.

[12] L. Brankovic and V. Estivill-Castro. Privacy issues in knowledge discovery and data

mining. In Proc. of Australian Institute of Computer Ethics Conference (AICEC99),

Melbourne, Victoria, Australia, July 1999.

[13] P. Cabena, P. Hadjinian, R. Stadler, J. Verhees, and A. Zanasi. Discovering Data

Mining from Concept to Implementation. Prentice Hall PTR, New Jersey 07458,

USA, 1998.

[14] A. Cavoukian. Data mining: Staking a claim on your privacy, Information and Privacy

Commissioner Ontario. Available from http://www.ipc.on.ca/ docs/datamine.pdf, Ac-

cessed on 21 May, 2008, 1998.

[15] A. Cavoukian. Tag, you’re it: Privacy implecations of radio frequency identification

(rfid) technology, Information and Privacy Commissioner Ontario. Available from

https://ozone.scholarsportal.info/ bitstream/1873/6228/1/10318697.pdf, Accessed 21

May, 2008, 2004.

[16] K. Chuang and M. Chen. Clustering categorical data by utilizing the correlated-force

ensemble. In Proc. of the 4th SIAM International Conference on Data Mining (SDM

04), April 22-24, 2004.

[17] C. Clifton, M. Kantarcioglu, J. Vaidya, X. Lin, and M. Y. Zhu. Tools for privacy

preserving data mining. SIGKDD Explorations, 4(2):28–34, 2002.

181

[18] T. Dalenius and S. P. Reiss. Data-swapping: A technique for disclosure control.

Journal of Statistical Planning and Inference, 6(1):73–85, 1982.

[19] C. J. Date. An Introduction to Database Systems. Addison Wesley, 7th edition, 2000.

[20] S. Datta, H. Kargupta, and K. Sivakumar. Homeland defense, privacy-sensitive data

mining, and random value distortion. In Proc. of the SIAM Workshop on Data Mining

for Counter Terrorism and Security (SDM’03), May 2003.

[21] P. de Wolf, J. M. Gouweleeuw, P. Kooiman, and L. Willenborg. Reflections on PRAM.

In Conference Programme of Statistical Data Protection ’98, Lisbon, 1998.

[22] R. Delmater and M. Hancock. Data Mining Explained: A Manager’s Guide to

Customer-Centric Business Intelligence. Digital Press, Boston, USA, 2001.

[23] W. Du and M. J. Atallah. Secure multiparty computation problems and their appli-

cations: A review and open problems. In Proc. of New Security Paradigms Workshop,

pages 11–20, Cloudcroft, New Mexico, USA, September 11-13 2001.

[24] W. Du, Y. S. Han, and S. Chen. Privacy-preserving multivariate statistical analy-

sis: Linear regression and classification. In Proc. of the Fourth SIAM International

Conference on Data Mining, Lake Buena Vista, Florida, USA, April 22-24 2004.

[25] W. Du and Z. Zhan. Building decision tree classifier on private data. In Workshop

on Privacy, Security, and Data Mining at The 2002 IEEE International Conference

on Data Mining (ICDM’02), Maebashi City, Japan, December 9 2002.

[26] W. Du and Z. Zhan. Using randomized response techniques for privacy-preserving data

mining. In Proc. of the Ninth ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining, pages 505–510, Washington, DC, USA, August 2003.

[27] M. Dutta, A. K. Mahanta, and A. K. Pujari. Qrock: A quick version of rock algorithm

for clustering of categorical data. Pattern Recognition Letters, 26(15):2364–2373, 2005.

[28] V. Estivill-Castro and L. Brankovic. Data swapping: Balancing privacy against preci-

sion in mining for logic rules. In Proc. of Data Warehousing and Knowledge Discovery

(DaWaK99), 1999.

182

[29] V. Estivill-Castro and I. Lee. Amoeba: Hierarchical clustering based on spatial prox-

imity using delaunaty diagram. In Proc. of the 9th International Symposium on Spatial

Data Handling, pages 7a.26–7a.41, 2000.

[30] V. Estivill-Castro and I. Lee. Autoclast: Automatic clustering via boundary extrac-

tion for mining massive pont-data sets. In Proc. of the 5th International Conference

on Geocomputation, 2000.

[31] A. V. Evfimievski, J. Gehrke, and R. Srikant. Limiting privacy breaches in privacy

preserving data mining. In Proc. of the Twenty-Second ACM SIGACT-SIGMOD-

SIGART Symposium on Principles of Database Systems, pages 211–222, San Diego,

CA, USA, June 2003.

[32] A. V. Evfimievski, R. Srikant, R. Agrawal, and J. Gehrke. Privacy preserving mining

of association rules. In Proc. of the Eighth ACM SIGKDD International Conference

on Knowledge Discovery and Data Mining, pages 217–228, 2002.

[33] C. Farkas and S. Jajodia. The inference problem: A survey. ACM SIGKDD Explo-

rations Newsletter, 4(2):6–11, December 2002.

[34] S. E. Fienberg. Privacy and confidentiality in an e-commerce world: Data mining,

data warehousing, matching and disclosure limitation. Statistical Science, 21:143–154,

2006.

[35] S. E. Fienberg and J. McIntyre. Data swapping: Variations on a theme by Dalenius

and Reiss. Journal of Official Statistics, 21:309–323, 2005.

[36] American Association for Artificial Intelligence. Fraud detection and prevention. avail-

able from http://www.aaai.org/aitopics/html/fraud.html. visited on 07.07.06.

[37] P. Fule and J. F. Roddick. Detecting privacy and ethical sensitivity in data mining

results. In Vladimir Estivill-Castro, editor, Proc. of 27th Australian Computer Sci-

ence Conference (ACSC2004), volume 26 of Conference in Research and Practice in

Information Technology, pages 163–168, 2004.

[38] V. Ganti, J. Gehrke, and R. Ramakrishnan. Cactus - clustering catagorical data

using summaries. In Proc. of ACM SIGKDD, International Conference on Knowledge

Discovery and Data Mining, San Diego, CA, USA, 1999.

183

[39] D. Gibson, J. Kleinberg, and P. Raghavan. Clustering categorical data: An approach

based on dynamical systems. In Proc. of the 24th VLDB Conference, New York, USA,

1998.

[40] H. Giggins and L. Brankovic. Protecting privacy in genetic databases. In Proc.

of of the 6th Engineering Mathematics and Applications Conference (EMAC 2003),

volume 2, pages 73–78, Sydney, Australia, 2003.

[41] B. Gilburd, A. Schuster, and R. Wolff. Privacy-preserving data mining on data grids

in the presence of malicious participants. In Proc. of 13th International Symposium on

High-Performance Distributed Computing (HPDC-13 2004), pages 225–234, Honolulu,

Hawaii, USA, June 2004.

[42] E. Gokcay and J. C. Principe. Information theoretic clustering. IEEE Transactions

on Pattern Analysis and Machine Intelligence, 24(2):158–171, February 2002.

[43] J.M. Gouweleeuw, P. Kooiman, L.C.R.J. Willenborg, and P.P. de Wolf. Post ran-

domisation for statistical disclosure control: Theory and implementation. Journal of

Official Statistics, 14(4):463–478, 1998.

[44] R. Groth. Data Mining A Hands-On Approach For Business Professionals. Prentice

Hall PTR, New Jersey 07458, USA, 1998.

[45] S. Guha, R. Rastogi, and K. Shim. Rock: A robust clustering algorithm for categor-

ical attributes. In Proc. of the 15th International Conference on Data Engineering,

Sydney, Australia, March 23-26, 1999.

[46] J. Han. How can data mining help bio-data analysis? In Proc. of Workshop on Data

Mining in Bioinformatics (BIOKDD’02), pages 1–4, Edmonton, Canada, 2002.

[47] J. Han and M. Kamber. Data Mining Concepts and Techniques. Morgan Kaufmann

Publishers, San Diego, CA 92101-4495,USA, 2001.

[48] A. A. Hintoglu and Y. Saygin. Suppressing microdata to prevent probabilistic classi-

fication based inference. In Proc. of Secure Data Management, Second VLDB Work-

shop, SDM 2005, pages 155–169, Trondheim, Norway, 2005.

[49] V. S. Iyengar. Transforming data to satisfy privacy constraints. In Proc. of

SIGKDD’02, Edmonton, Alberta, Canada, 2002.

184

[50] M. Kantarcioglu and C. Clifton. Privacy-preserving distributed mining of association

rules on horizontally partitioned data. IEEE Trans. Knowl. Data Eng., 16(9):1026–

1037, 2004.

[51] M. Kantarcoglu and J. Vaidya. Privacy preserving naive bayes classifier for horizon-

tally partitioned data. In Proc. of IEEE ICDM Workshop on Privacy Preserving Data

Mining, pages 3–9, Melbourne, Florida, USA, November 2003.

[52] M. Kantardzic. Data Mining Concepts, Models, Methods, and Algorithms. IEEE

Press, NJ, USA, 2003.

[53] H. Kargupta, K. Liu S. Datta, J. Ryan, and K. Sivakumar. Link analysis, privacy

preservation, and random perturbations. In Proc. of Workshop on Link Analysis for

Detecting Complex Behavior (LinkKDD2003), Washington, D.C., USA, 2003.

[54] H. Kargupta, S. Datta, Q. Wang, and K. Sivakumar. On the privacy preserving prop-

erties of random data perturbation techniques. In Proc. of the 3rd IEEE International

Conference on Data Mining (ICDM 2003), pages 99–106, Melbourne, Florida, USA,

December 2003.

[55] H. Kargupta, S. Datta, Q. Wang, and K. Sivakumar. Random-data perturbation

techniques and privacy-preserving data mining. Knowledge and Information Systems,

7:387–414, 2005.

[56] J. J. Kim. A method for limiting disclosure in microdata based on random noise and

transformation. In American Statistical Association, Proc. of the Section on Survey

Research Methods, pages 303–308, 1986.

[57] J. J. Kim. Subpopulation estimation for the masked data. In American Statistical

Association, Proc. of the Section on Survey Research Methods, pages 456–461, 1990.

[58] J. J. Kim and W. E. Winkler. Masking microdata files. In American Statistical

Association, Proc. of the Section on Survey Research Methods, pages 114–119, 1995.

[59] J. J. Kim and W. E. Winkler. Multiplicitive noise for masking continuous data.

Technical report, Statistical Research Division, U.S. Bureau of the Census, April 17

2003.

185

[60] R. Kohavi. Scaling up the accuracy of naive-bayes classifiers: a decision-tree hybrid.

In Proc. of the Second International Conference on Knowledge Discovery and Data

Mining, 1996.

[61] P. Kooiman, L. Willenborg, and J. Gouweleeuw. Pram: A method for disclosure

limitation of microdata. Research Paper 9705, Statistics Netharlands, P.O. Box 4000,

2270 JM Voorburg, The Netharlands, June 1997.

[62] D. Lambert. Measures of disclosure risk and harm. Journal of Official Statistics,

9:313–331, 1993.

[63] I. Lee and V. Estivill-Castro. Effective and efficient boundary-based clustering for

three-dimensional geoinformation studies. In CODAS, pages 87–96, 2001.

[64] R. Li. Instability of Decision Tree Classification Algorithms. PhD dissertation, The

University of Illinois at Urbana-Champaign, 2001.

[65] T. Li, S. Ma, and M. Ogihara. Entropy-based criterion in categorical clustering. In

Proc. of the 21st International Conference on Machine Learning, Banff, Canada, 2004.

[66] Y. Li, L. Wang, and S. Jajodia. Preventing interval-based inference by random data

perturbation. In Proc. of Privacy Enhancing Technologies, San Francisco, CA, USA,

2002.

[67] Y. Li, S. Zhu, L. Wang, and S. Jajodia. A privacy-enhanced microaggregation method.

In Proc. of 2nd International Symposium on Foundations of Information and Knowl-

edge Systems, pages 148–159, 2002.

[68] C. K. Liew, U. J. Choi, and C. J. Liew. A data distortion by probability distribution.

ACM Trans. Database Syst., 10(3):395–411, 1985.

[69] T. Lim, W. Loh, and Y. Shih. A comparison of prediction accuracy, complexity, and

training time of thirty-three old and new classification algorithms. Machine Learning,

40(3):203–228, 2000.

[70] Y. Lindell and B. Pinkas. Privacy preserving data mining. In Proc. of Advances in

Cryptology - CRYPTO 2000, 20th Annual International Cryptology Conference, pages

36–54, Santa Barbara, California, USA, 2000.

186

[71] Y. Lindell and B. Pinkas. Privacy preserving data mining. J. Cryptology, 15(3):177–

206, 2002.

[72] K. Liu, H. Kargupta, and J. Ryan. Random projection-based multiplicative data

perturbation for privacy preserving distributed data mining. IEEE Transactions on

Knowledge and Data Engineering, 18(1):92–106, 2006.

[73] K. Muralidhar, R. Parsa, and R. Sarathy. A general additive data perturbation

method for database security. Management Science, 45(10):1399–1415, 1999.

[74] K. Muralidhar and R. Sarathy. An enhanced data perturbation approach for small

data sets. Decision Sciences, 36(3):513–529, 2005.

[75] K. Muralidhar and R. Sarathy. Data shuffling - a new masking approach for numerical

data. Management Science, forthcoming, 2006.

[76] J. Natwichai, X. Li, and M. E. Orlowska. A reconstruction-based algorithm for clas-

sification rules hiding. In G. Dobbie and Eds. J. Bailey, editors, Proc. of the 17th

Australasian Database Conference (ADC2006), pages 49–58, Hobart, Australia, 2006.

[77] UCIrvine University of California. Uci machine learning. available from

http://www.ics.uci.edu/∼mlearn/MLRepository.html. visited on 12.10.06.

[78] US Department of Labor. Executive order 13145. avail-

able from http://www.dol.gov/oasam/regs/statutes/eo13145.htm, February 8 2000.

visited on 23.07.06.

[79] The University of Waikato. available from http://www.cs.waikato.ac.nz/ml/weka/.

visited on 12.10.06.

[80] S. R. M. Oliveira and O. R. Zäıane. Foundations for an access control model for

privacy preservation in multi-relational association rule mining. In Proc. of IEEE

ICDM Workshop on Privacy, Security and Data Mining, pages 19–26, Maebashi City,

Japan, December 2002.

[81] S. R. M. Oliveira and O. R. Zäıane. Privacy preserving frequent itemset mining. In

Proc. of IEEE ICDM Workshop on Privacy, Security and Data Mining, page 4354,

Maebashi City, Japan, December 2002.

187

[82] S. R. M. Oliveira and O. R. Zäıane. Algorithms for balancing privacy and knowledge

discovery in association rule mining. In Proc. of the 7th International Database Engi-

neering and Applications Symposium (IDEAS’03), pages 54–63, Hong Kong, China,

July 2003.

[83] S. R. M. Oliveira and O. R. Zäıane. Protecting sensitive knowledge by data saniti-

zation. In Proc. of the 3rd IEEE International Conference on Data Mining (ICDM

2003), pages 613–616, Melbourne, Florida, USA, December 19-22 2003.

[84] B. Pinkas. Cryptographic techniques for privacy-preserving data mining. SIGKDD

Explorations, 4(2):12–19, 2002.

[85] J. R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers,

San Mateo, California, USA, 1993.

[86] S. P. Reiss. Practical data-swapping: The first steps. ACM Transactions on Database

Systems, 9(1):20–37, 1984.

[87] Consumer Report. Ibm multi-national privacy survey consumer report. available from

http://www1.ibm.com/services/files/privacy survey oct991.pdf. visited on 01.07.03.

[88] R. M. Research. Community attitude towards privacy 2004, a survey prepared for the

office of the federal privacy commissioner, australia, survey prepared by roy morgan

research. avail-

able from http://www.privacy.gov.au/publications/rcommunity/index.html, June 18

2004. visited on 23.07.06.

[89] S. Rizvi and J. R. Haritsa. Maintaining data privacy in association rule mining. In

Proc. of the 28th VLDB Conference, pages 682–693, Hong Kong, China, 2002.

[90] J. Roddick and P. Fule. A system for detecting privacy and ethical sensitivity in data

mining results. Technical Report SIE-03-001, School of Informatics and Engineering,

Flinders University, Adelaide, Australia, April 2003.

[91] A. P. Sanil, A. F. Karr, X. Lin, and J. P. Reiter. Privacy preserving regression mod-

elling via distributed computation. In Proc. of the Tenth ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, pages 677–682, Seattle, Wash-

ington, USA, August 2004.

188

[92] R. Sarathy, K. Muralidhar, and R. Parsa. Perturbing nonnormal confidential at-

tributes: The copula approach. Management Science, 48(12):1613–1627, 2002.

[93] Y. Saygin, V. S. Verykios, and C. Clifton. Using unknowns to prevent discovery of

association rules. SIGMOD Record, 30(4):45–54, 2001.

[94] Y. Saygin, V. S. Verykios, and A. K. Elmagarmid. Privacy preserving association rule

mining. In RIDE, pages 151–158, 2002.

[95] E. Schuman. At wal-mart, world’s largest retail data warehouse gets even larger. avail-

able from http://www.eweek.com/article2/0,1759,1675960,00.asp, 10 2004. visited on

29.03.05.

[96] A. Schuster, R. Wolff, and B. Gilburd. Privacy-preserving association rule mining in

large-scale distributed systems. In Proc. of 4th IEEE/ACM International Symposium

on Cluster Computing and the Grid (CCGrid 2004), pages 411–418, Chicago, Illinois,

USA, April 19-22 2004.

[97] A. C. Tamhane. Randomized response techniques for multiple sensitive attributes.

The American Statistical Association, 76(376):916–923, 1981.

[98] H. Taylor. Most people are “privacy pragmatists” who, while concerned

about privacy, will sometimes trade it off for other benefits. available from

http://www.harrisinteractive.com/harris poll/index.asp?PID=365, March 19 2003.

visited on 23.07.06.

[99] P. Tendick. Optimal noise addition for preserving confidentiality in multivariate data.

Journal of Statistical Planning and Inference, 27:341–353, 1991.

[100] P. Tendick and N. S. Matloff. A modified random perturbation method for database

security. ACM Trans. Database Syst., 19(1):47–63, 1994.

[101] B. M. Thuraisingham. Data mining, national security, privacy and civil liberties.

SIGKDD Explorations, 4(2):1–5, 2002.

[102] J. F. Traub, Y. Yemini, and H. Wozniakowski. The statistical security of a statistical

database. ACM Trans. Database Syst., 9(4):672–679, 1984.

189

[103] Human Genome Program US Department of Energy. Genomics and its impact on

science and society. available from

http://www.ornl.gov/sci/techresources/Human Genome/publicat/primer2001/. vis-

ited on 07.07.06.

[104] J. Vaidya and C. Clifton. Privacy preserving association rule mining in vertically

partitioned data. In Proc. of the Eighth ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining, pages 639–644, Edmonton, Alberta, Canada,

July 2002.

[105] J. Vaidya and C. Clifton. Privacy-preserving k-means clustering over vertically par-

titioned data. In Proc. of the Ninth ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining, pages 206–215, Washington, DC, USA, Au-

gust 2003.

[106] J. Vaidya and C. Clifton. Privacy preserving näıve bayes classifier for vertically parti-

tioned data. In Proc. of the Fourth SIAM International Conference on Data Mining,

Lake Buena Vista, Florida, USA, April 2004.

[107] J. Vaidya and C. Clifton. Privacy-preserving outlier detection. In Proc. of the

4th IEEE International Conference on Data Mining (ICDM 2004), pages 233–240,

Brighton, UK, November 2004.

[108] A. Veloso, W. Meira Jr., S. Parthasarathy, and M. de Carvalho. Efficient, accurate

and privacy-preserving data mining for frequent itemsets in distributed databases.

In Proc. of XVIII Simpósio Brasileiro de Bancos de Dados (SBBD), pages 281–292,

Manaus, Amazonas, Brasil, 2003.

[109] V. S. Verykios, E. Bertino, I. N. Fovino, L. P. Provenza, Y. Saygin, and Y. Theodoridis.

State-of-the-art in privacy preserving data mining. SIGMOD Record, 33(1):50–57,

2004.

[110] V. S. Verykios, A. K. Elmagarmid, E. Bertino, Y. Saygin, and E. Dasseni. Association

rule hiding. IEEE Trans. Knowl. Data Eng., 16(4):434–447, 2004.

[111] S. S. Warner. Randomized response: A survey technique for eliminating evasive

answer bias. Journal of American Statistical Association, 60(309):63–69, March 1965.

190

[112] J. Frand’s web page at UCLA page. Data mining: What is data mining? avail-

able from www.anderson.ucla.edu/faculty/

json.frand/teacher/technologies/palace/datamining.htm. visited on 29.03.05.

[113] Teradata webpage. Wal-mart is making its huge dara warehouse huger. available from

www.teradata.com/t/page/ 129223/. visited on 29.03.05.

[114] C. Westphal and T. Blaxton. Data Mining Solutions: Methods and Tools for Solving

Real-World Problems. John Wiley & Sons, Inc., Toronto,Canada, 1998.

[115] Wikipedia.

Market trends. available from http://en.wikipedia.org/wiki/Market trends. visited

on 07.07.06.

[116] R. L. Wilson and P. A. Rosen. The impact of data perturbation techniques on data

mining accuracy. In Proc. of the 33rd Annual Meeting of the Decision Sciences Insti-

tute, pages 181–185, 2002.

[117] I. H. Witten and E. Frank. Data Mining: Practical Machine Learning Tools and

Techniques. Morgan Kaufmann, San Francisco, 2nd edition, 2005.

[118] R. N. Wright and Z. Yang. Privacy-preserving Bayesian network structure computa-

tion on distributed heterogeneous data. In Proc. of the Tenth ACM SIGKDD Interna-

tional Conference on Knowledge Discovery and Data Mining, pages 713–718, Seattle,

Washington, USA, August 2004.

[119] A.C. Yao. Protocols for secure computations. In Proc. of the 23rd Annual IEEE

Symposium on Foundations of Computer Science, 1982.

[120] N. Zhang, S. Wang, and W. Zhao. A new scheme on privacy preserving association rule

mining. In Knowledge Discovery in Databases: PKDD 2004, 8th European Conference

on Principles and Practice of Knowledge Discovery in Databases, pages 484–495, Pisa,

Italy, September 2004.

[121] Y. Zhu and L. Liu. Optimal randomization for privacy preserving data mining. In

Proc. of the Tenth ACM SIGKDD International Conference on Knowledge Discovery

and Data Mining, pages 761–766, Seattle, Washington, USA, August 2004.

